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» The topic of the book is Stone-Priestley duality, with applications to logic and
the foundations of computer science.
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(‘meet of S”), and forany ac L, an\/ S =\ s(aNs).

» M. H. Stone (1936) proved that every bounded distributive lattice L is isomorphic
to the lattice of compact-and-open sets of some topological space X;.

» Moreover, there is a unique such space among the spaces that are stably compact

and have a base of compact-open sets; we call such spaces spectral.
» Also, homomorphisms L — L’ correspond to certain continuous X;r — X.
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coherent: Finite intersection of compact-saturated is compact;

well-filtered: For any filtering collection F of compact-saturated and any open set U,
if | F C U then there exists K € F such that K C U.

Proposition

If p is a stably compact topology, then the complements of the p-compact-saturated are

also a stably compact topology, &d :
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Stably compact spaces
> A saturated set in a topological space is any set that is an intersection of open
sets. Equivalently, it is an up-set for the specialization order.

> A stably compact space is a topological space which is:
> To;

» compact;

» locally compact;

» coherent: Finite intersection of compact-saturated is compact;

» well-filtered: For any filtering collection F of compact-saturated and any open set U,
if (VF C U then there exists K € F such that K C U.

Proposition

A Ty locally compact space is well-filtered if, and only if, it is sober.
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» The partial order < is closed in X x X.
» Given (X, p) stably compact, we obtain a compact ordered space (X, <, 7), where

» < is the specialization order of p;
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» For compact ordered spaces: morphisms are continuous monotone functions.
» For (X, px) and (Y, py) stably compact: morphisms are functions f: X — Y
which are coherent, i.e., continuous (X, px) — (Y, py) and (X, p%) — (Y, p%).
» A Priestley space is a compact ordered space (X, <, 7) such that:
For every x,y € X, if x £ y, then there exists a clopen up-set K such that
x € K and y ¢ K (totally order-disconnected).

Proposition
The assignment (X, p) — (X, <,T) gives an isomorphism between the categories of
stably compact spaces and compact ordered spaces (KOrd).

The spectral spaces are exactly those which are sent to Priestley spaces.
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Theorem
The category of bounded distributive lattices is dually equivalent to the category of

Priestley spaces, and therefore also to the category of spectral spaces.

» For any bounded distributive lattice L, define the dual space (X, <, 7):

» points of X; are bounded lattice homomorphisms L — 2;
» < is the point-wise order;
» 7 is generated by the family of sets 2 and 2°, as a ranges over L, where:

3 (xe X | x(a) =1} and & = {x € X | x(a) = 0}

» Then (X, <,7) is a Priestley space.
> For h: L' — L, define fi: X, — Xuv by fu(x) % x o h.

» This gives a natural isomorphism Hompy (L', L) — Homp, (X, X;/).
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> A frame is a partial order (L, <) such that every subset
S C L has a least upper bound \/ S (‘join of S'), and a greatest lower bound A S
(‘meet of S”), and, forany ac L, an\/ S =V s(ans).

» Another version of Stone duality gives a dual equivalence between spatial frames

and sober spaces.

» The category DL embeds in the category of frames:
» For any L, we have the coherent frame of ideals of L;
» For any lattice homomorphism L’ — L we have a compact element preserving frame
homomorphism from the lattice ideals of L’ to the lattice ideals of L.
» The duality spatial frames — sober spaces restricts to a dual equivalence between
coherent frames and spectral spaces.
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» A spectral dcpo is a spectral space (X, 7) such that 7 is equal to the Scott
topology of its specialization order.

Theorem (Announced by M. Erné 2009, see Thm. 7.38 in our book)

A topological space (X, 1) is a spectral dcpo if, and only if, the topology T is coherent,

sober, and has a base of finitely generated open up-sets.

» The proof uses a non-constructive choice via Rudin’s lemma.
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exists d € D such that x < d.

» x is compact if x < x.

» A spectral domain is a spectral dcpo which is also a domain.

Proposition

The compact-open sets of a spectral domain are exactly the sets of the form TF, with

F a finite set of compact elements.

» Moreover, spectral domains are algebraic: every element is a directed supremum of

the compact elements way below it.

» The set of compact elements K(X) entirely describes the domain X.
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Characterization of spectral domains

» For an algebraic domain X, if we know only K(X), we can determine whether or
not X is a spectral domain.

» When F is a subset of a poset P, a minimal upper bound of F is a minimal (not

necessarily minimum!) element of the set of upper bounds of F.

> A poset P is finitely mub-complete if, for all finite F C P:

» F has finitely many minimal upper bounds;
» every upper bound of F has a minimal upper bound below it.

Theorem (“2/3 SFP")

A domain X is a spectral domain if, and only if, X is algebraic, the minimal upper
bounds of any finite set F C K(X) are all in K(X), and K(X) is finitely mub-complete.
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» Spectral spaces are dual to distributive lattices.

» Which distributive lattices are dual to spectral domains?

> An element p in a bounded distributive lattice L is (finitely) join prime if, for every
finite subset F of L, p < \/ F implies tp N F # 0.
» [ has enough join primes if every element is the join of a finite set of join primes.

Theorem
Stone duality restricts to a dual equivalence between bounded distributive lattices with
enough join primes and spectral domains.

16 /30



Priestley spaces as profinite posets

> A finite poset is a Priestley space in the discrete topology.

17/30



Priestley spaces as profinite posets

> A finite poset is a Priestley space in the discrete topology.

» In the category KOrd, a projective limit of Priestley spaces is a Priestley space.

17/30



Priestley spaces as profinite posets

> A finite poset is a Priestley space in the discrete topology.

» In the category KOrd, a projective limit of Priestley spaces is a Priestley space.

» A projective diagram is a functor D: | — KOrd with | a downwards directed poset.

17/30



Priestley spaces as profinite posets

> A finite poset is a Priestley space in the discrete topology.

» In the category KOrd, a projective limit of Priestley spaces is a Priestley space.

» A projective diagram is a functor D: | — KOrd with | a downwards directed poset.

» Every Priestley space is a projective limit of finite posets.

17/30



Priestley spaces as profinite posets

> A finite poset is a Priestley space in the discrete topology.

» In the category KOrd, a projective limit of Priestley spaces is a Priestley space.

» A projective diagram is a functor D: | — KOrd with | a downwards directed poset.

» Every Priestley space is a projective limit of finite posets.
» This gives yet another view on Stone-Priestley duality:

DL =~ Ind(DLpi,) ~°P Pro(DL} ) ~ Pro(Posgi,) ~ Pr
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» Given domains X and Y in some class C, we would like the space of
Scott-continuous functions [X, Y] to again lie in C.

> The topology on [X, Y] is generated by the sets

K— U {felX, Y]:fIK]C U}

with K compact-saturated in X, and U open in Y.

» Plotkin: Consider C = bifinite domains.

» Abramsky: Duality lets us analyze this situation:

» The construction (X, Y) +— [X, Y], when X and Y are spectral domains, has a
natural dual construction.

18/30
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» We view bifinite domains as bifinite spectral spaces:

» An embedding projection pair (EPP) between spectral spaces is an adjoint pair

e: X 5 Y: p of coherent morphisms, with e injective (and hence p surjective).
» A spectral space is bifinite if it is the projective limit in Spec of the projections of its
finite-domain EPP'’s.

> A bifinite domain is always a spectral domain.

» For a spectral domain X, we can also characterize bifiniteness as a property of the

poset of compact elements K(X) or of the lattice of compact-open subsets of X.

» The interest of duality for bifinite domains is to solve domain equations.
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» For X a topological space, let VT(X) the upper Vietoris space:
> points of VT(X) are compact-saturated subsets of X;
> topology on VT(X) is generated by, for U C X open:

OU ¥ (K e VI(X) | K C U}

» If Y is spectral, then so is VT(Y).
> Let X, Y spectral spaces with dual lattices L, M.
The space [X, VT(Y)] is always spectral, with dual lattice F_, (L, M):
> F_,(L,M)is a quotient of Fp_(L, M). Write a — b for elements of Fp_(L, M).

> F_(L,M) ef FoL(L, M) /6, with 6 generated by the equations

(\/A) b=/ N\@—b) and a- (/\B) = A (a0 — b),
aca beB

for any finite AU {ap} C L and BU {bpy} C M.
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» The subspace [X, Y] of [X, VT(Y)] is not always spectral.

» When it is, it is dual to the largest quotient Q of F_,(L, M) which preserves
joins at primes, by which we mean:
For any homomorphism x: Q@ — 2, a € Q with x(a) = 1, and any finite subset G
of Q, there exists &’ € Q with x(a’) =1 and

aﬁ(\/G) SQ\/{a’Hg|gEG}.

» This lets us show that [X, Y] is a spectral space whenever X is a spectral domain.

» One further shows that [X, Y] is bifinite if X and Y are.
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Domains in duality-theoretic form
» One may use this theory to construct domains X such that X = [X, X].

» E.g., starting from the Sierpinski space S, one builds a sequence of EPP’s

S 18,8 S [[S,SLIS, S S -

» The dual of S is the three-element lattice 3, and we get a dual sequence

35 F,(3,3) 5 FL(F-(3,3),F2(3,3) S -+

» The limit of domains becomes a colimit of lattices, and can be easier to compute,

and prove things about.
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determine if w is congruent to 1 modulo 3.

» Solution 1: an automaton A:
0 1
1 0
Answer yes iff A accepts w.

» Solution 2: a homomorphism ¢: {0,1}* — Ss defined by
0 (12), 1+ (01).

Answer yes iff the permutation ¢(w) sends 0 to 1.
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Automata, monoids, and logic
» A programming problem: given a natural number in binary, w € {0,1}",
determine if w is congruent to 1 modulo 3.

» Solution 1: an automaton A:
0 1
1 0
Answer yes iff A accepts w.
» Solution 3: a formula ¢ describing accepting runs of A:
HQoﬂQlan(Qo(firSt) A\ Ql(last)/\
Vx[0(x) A Qo(x) = Qo(Sx)] A [1(x) A Qo(x) = Qi(SX)] A ...).
Answer yes iff w satisfies the formula ¢.
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Regular sets

> A set L of finite words is regular if it satisfies the following equivalent conditions:

» [ is definable by a monadic second order sentence,

» L is recognizable by a finite automaton,
» [ is saturated under a finite index monoid congruence on ¥*,

i.e., there exists a surjective homomorphism
h: ¥* — M,
with M a finite monoid, such that, for some P C M,

L=h"Y(P).

> Note that the collection of regular sets of X-words is a Boolean algebra.
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The free profinite monoid

» The free profinite monoid over X is the embedding of ¥ into a topological monoid

Y P such that, for every finite monoid M and function f: ¥ — M%®t, there exists
a unique continuous homomorphism f: P — MY that extends f.

FinMon _
H/ \H" oY — Mot
) (—)pro F- yPpro _ Mdisc
FinSet > TopMon

» Elements of XP™ are called profinite words over X.
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Duality between regular sets and free profinite monid

Theorem. The topological space underlying the free profinite monoid P is

homeomorphic to the Stone dual space of the Boolean algebra of regular sets.

» What is the monoid structure on P dual to?

» On the Boolean algebra of regular sets, we have the operation, for K, L regular,

K\LY {wex| forall ue K,uw € L}.

» This is part of a residuation structure (Reg(X*),\, /).

» Its dual is the monoid operation on XP™.
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Preserving joins at primes, again!

» More generally: Any continuous binary operation * on a Boolean space X comes

from a residuation structure on the Boolean algebra of clopen sets.

» An operation \: B x B — B on a Boolean algebra B preserves joins at primes if:

For any homomorphism x: B — 2, a € B with x(a) = 1, and finite subset G of B,

there exists a’ € B with x(a’) =1 and

a\(V6)<\{d\glgea)

Theorem
A Boolean residuation algebra (B, \, /) is dual to a binary topological algebra (X, )

it, and only if, both \ and / preserve joins at primes.
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Automata in duality-theoretic form

> Automata theory considers questions of the form: How complex is it to compute a
given regular set? For example, given a regular set L,
» can it be defined with only first-order quantifiers?
» can it be recognized with monoids that don’t have subgroups?

» We want an algorithm that answers this, given as input an automaton for L.

» One may use duality to analyze such questions:
subalgebra F — Reg(X*) is dual to quotient XP° — Qf
» For example,
FO(Z*) < Reg(X*) isdualto  XP© — ¥P©°/(x¥ = x“T1)

» More about this in Chapter 8 of ...
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