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Introduction

This thesis is concerned with sheaves and duality, using order completions
as an essential tool. The interplay between duality, sheaves and order com-
pletions will be a recurring theme in this thesis. In this introduction, we
discuss our motivation for studying these topics, and give an overview of
the chapters to come.

Two approaches to logic

Logic provided the main motivation and inspiration for many of the top-
ics that are addressed in this thesis. In the broadest possible terms, logic
studies the structure of arguments. To do so, several kinds of mathematical
methods can be employed, which we will broadly divide in algebraic and
spatial approaches to logic.

An algebraic approach to logic starts from the inherent syntactic structure of
logical arguments. Algebra can be a useful tool to abstractly study such
syntactic structure. For example, just as commutative rings are an abstrac-
tion of the integers with the operations of addition, multiplication, and sub-
traction, Boolean algebras are an abstraction of propositional sentences with
the operations of classical disjunction (‘or’), conjunction (‘and’) and nega-
tion (‘not’). Algebra has a great generalizing power; for example, if, in-
stead of integers, one wants to study matrices with integer entries, then one
can still use the framework of rings, dropping the axiom of commutativ-
ity. Similarly, if one is interested in logics with quantifiers, modalities, or
non-classical operations, then one can consider generalizations of Boolean
algebras. In this approach to logic, the relation of logical derivability is
formalized as a partial order in the algebra, and logical equivalence thus
corresponds to equality.

On the other hand, a spatial approach to logic starts from a collection, or
space, of ‘models’ that can interpret logical formulas. The ‘meaning’ of a
logical formula is then defined using this space. For example, in classical
propositional logic, a point in the space is an assignment of truth values to
propositional variables. Any propositional formula then defines the subset
of points (models) where that formula is true. In this spatial approach, two
logical formulas are considered equivalent if they are true in exactly the
same models.
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Duality in logic: an example

Duality provides a link between the algebraic and spatial approaches to
logic. To illustrate the use of duality in logic, we now briefly sketch a proof
of the completeness theorem for first-order logic. In the proof of that theo-
rem, the crux of the argument is to show that, if a first-order sentence ¢ is
not syntactically derivable from a set of first-order sentences I', then there
exists a first-order model in which all sentences in I' are true, but ¢ is not.
Duality theory for Boolean algebras, as developed in the 1930’s by M. H.
Stone, says that any Boolean algebra can be represented as the collection of
clopen subsets of some compact Hausdorff topological space. In particular,
we can apply this fact to the collection of first-order sentences, considered
up to provable equivalence. To any point x of the corresponding topolog-
ical space, one may associate the set of first-order sentences which (under
Stone’s representation) contain the point x. The sets of sentences obtained
in this manner are known as complete consistent theories, or ultrafilters.
Any such ultrafilter can be used to canonically define a first-order model,
M. This model M, will be especially useful if the first-order sentences that
are true in M, are exactly the sentences which contain the point x. Call a
point x special if its associated model has this useful property. Since Stone’s
space is compact and Hausdorff, one may use Baire category theorem from
general topology to prove that the special points are dense in any closed
subspace. Now, if ¢ is a first-order sentence that is not syntactically deriv-
able from a set of sentences I, then the intersection of the sentences in I’ is
closed and not contained in ¢; by denseness, there is a special point x in
this closed set which is not in ¢. The associated model M is the first-order
model that we needed to construct.!

The proof outlined in the previous paragraph follows a general scheme,
which may be described as follows. A problem from logic (finding a coun-
termodel for a non-derivable sentence) is solved by translating it into a
topological question (does there exist a ‘special point’?), which can be an-
swered using the well-developed theory of general topology (Baire cate-
gory theorem). Duality is the general mechanism which enables one to
translate back and forth between algebraic and spatial approaches to logic.
Mathematically speaking, a duality is a contravariant categorical equiva-
lence between a category of algebras and a category of spaces. This means
that any algebra has a space associated to it, and vice versa, in such a way
that maps between algebras correspond to maps between the associated
spaces, in the reverse direction. We will give more precise mathematical

IThe completeness of first-order logic was first proved by Godel [69]. The proof that we
outlined in this paragraph was first given by H. Rasiowa and R. Sikorski in [129]; also see the
classical reference [130].



background on Stone duality in Section 1.1 of this thesis.

In the above example, the collection of models M, associated to the (spe-
cial) points x in the space played a crucial role. This collection of models
M, can be made in such a way that it “varies continuously’ in the variable
x. Sheaves, the other focal point of this thesis, are designed precisely to
deal with structures that vary continuously over a topological space. These
observations form the basis of the sheaf-theoretic, categorical approach to
first-order logic.

Using order completions

Stone’s original duality theory was concerned with Boolean algebras, which
model the calculus of formulas in classical propositional logic. In the above
example, Stone duality was used to prove a basic theorem in classical first-
order logic. Many other kinds of logic, including modal, intuitionistic, sub-
structural, and multi-valued logic, can be studied using generalizations of
Stone duality. Priestley duality is one such generalization: it deals with dis-
tributive lattices, i.e., the algebraic structures corresponding the negation-
free fragment of propositional logic, cf. Figure 1 for an example. Often,
one may want to enrich the algebraic theory of distributive lattices with
operations, such as implication. This can lead, for example, to a defini-
tion of Heyting algebras, the algebraic structures for Brouwer’s intuitionis-
tic logic. If one imposes slightly different axioms for implication, one may
arrive at algebraic structures for other logics. For example, the natural al-
gebraic structures for infinite-valued Lukaciewicz logic, MV-algebras, are
distributive lattices enriched with operations of addition and subtraction.
Chapter 4 of this thesis is devoted to sheaf representations and duality the-
ory for MV-algebras. For a slightly different, but related, example, algebraic
structures for modal logic are obtained by adding so-called modality oper-
ators to distributive lattices or Boolean algebras.

Thus, from the point of view of logic, it is useful to have a duality theory
that also accounts for additional operations on Boolean algebras and lat-
tices. For example, if one adds an operation to a Boolean algebra, one may
wonder to what kind of structure this corresponds on the space dual to the
algebra. Order completions, and canonical extensions in particular, have
been useful to answer questions of this kind. Canonical extensions provide
an algebraic perspective on duality theory; we will briefly sketch this idea,
referring to Section 1.2 for more mathematical details. Broadly speaking,
the canonical extension of an algebraic structure is a complete extension of
it, in the sense that arbitrary limits exist, which preserves the finitary structure.
For example, the canonical extension of a Boolean algebra is the power set
algebra of the Stone’s representing space. Note that, in the above proof of
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the completeness theorem of first-order logic, we already implicitly used
the canonical extension, in order to make statements such as “the set of
first-order formulas which contain a point x”. Canonical extensions also
exist for lattices in general, which makes the scope of the theory very wide.
We will use canonical extensions for lattices to study topological duality for
lattices in Chapter 6 of this thesis. A further advantage of order comple-
tions is that they often allow for a relatively simple treatment of morphisms
between algebras. This is both the case for canonical extensions, as already
mentioned above, and for a different kind of order completion that we call
the frame completion here. We will discuss the relationships between Stone
duality and order completions in more detail in Chapter 1. Frame comple-
tions will play a role in Chapter 3, and also, alongside canonical extensions,
in Chapter 2.

Figure 1: An example of a distributive lattice A.

Sheaves and duality

So far, we have discussed the use of duality and order completions in logic,
but we have mentioned sheaves only briefly. Sheaves will appear in chap-
ters 3, 4 and 5 of this thesis. Here, we will sketch the basic relationship
between sheaves and duality theory in the context of finite lattices.

Consider the distributive lattice A in Figure 1. With the purpose of gain-
ing a better understanding of A, one may be interested in direct prod-
uct decompositions of A, i.e., collections of lattices Ay,..., A, such that
A =2 Ay x ---x Ay. The Priestley dual space of A characterizes all such
decompositions: it follows from (finite) Priestley duality that product de-
compositions of A correspond to disjoint sum decompositions of the dual
space of A. Because this example is finite, the dual space of A has a trivial
topology, but a non-trivial order, depicted in Figure 2. One may now read
off all possible product decompositions of A from the dual space. For ex-
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ample, consider the decomposition of the dual space into two pieces, one
piece containing the two points on the left, the other containing the three
points on the right. This decomposition corresponds to a representation of
A as the product of the two lattices Ag and A; in Figure 3.

.. N

Figure 2: The dual space of A.

Ao Ay
Figure 3: Distributive lattices Ag, A for which A = Ay x A;.

In the infinite case, it will usually be impossible to find full product decom-
positions such as the one in the above example. However, one can often
still find an embedding of A into a product of simpler structures (4;);cy,
say. Elements of A then correspond to certain elements of the full product
P := Tlic; Ai. The embedding of A into the product P is called a sheaf
representation if there exists a “topological description” of those elements
of P which come from elements of A. We now broadly explain the mean-
ing of the phrase “topological description” in the previous sentence. First
note that an element of the full direct product P is a function s from I to
the union of the lattices A; with the property that s(i) € A; foralli € I;
such functions are called (discrete) global sections. In particular, elements
of A give rise to global sections. Suppose further that both the index set
I and the set-theoretic union of the A; are equipped with a topology. Un-
der these assumptions, the embedding of A into P is a sheaf representation
if the global sections coming from A are exactly the global sections which
are continuous with respect to these topologies. In Chapter 3 of this thesis,
we will show that sheaf representations of a distributive lattices still corre-
spond to certain decompositions of the Priestley dual space of A, as in the
finite example that we gave here.
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Overview of the thesis

§3 1 §1 1 §1 2
Sheaves Duality Completions

e o

Skew lattices MV-algebras Stably compact spaces Lattices

Figure 4: In this diagram, boxes refer to the sections where the relevant pre-
liminaries can be found, while lines indicate the central topics per chapter;
e.g., chapter 4 discusses duality and sheaves for MV-algebras.

In Chapter 1, we recall the relevant mathematical background on Stone du-
ality and order completions, in particular canonical extensions and frame
completions. While doing so, we pay particular attention to the intimate
connections between duality and completions.

Traditionally, Stone-type dualities and canonical extensions have been most
usefully applied to classes of spaces which have a canonical basis for the
topology. We will show in Chapter 2 that the connection between Stone
duality and canonical extensions still exists in the wider context of stably
compact spaces, where a canonical choice of basis is not available. Stably
compact spaces form a robust class which is large enough to include all
spaces that play a role in the existing theory of Stone duality and canonical
extensions, but also, for example, compact Hausdorff spaces, which are out
of the scope of Stone’s original duality.

Sheaves will enter the mathematical stage in Chapter 3, where we study
Priestley duality for sheaf representations of distributive lattices. The two
main ingredients for doing so are the theory of stably compact spaces stud-
ied in Chapter 2 and the perspective on duality provided by frame com-
pletions in Chapter 1. These two strands combine to provide a complete
dual characterization of sheaves of distributive lattices that are ‘flasque on
a basis’, a generalization of the well-known notion of ‘flasque’.

The duality theory for flasque sheaves on a basis is applied to the setting
of MV-algebras, or equivalently, unital lattice-ordered abelian groups, in
Chapter 4. MV-algebras provide the algebraic semantics for Lukasiewicz
infinite-valued propositional logic, thus playing an analogous role to that of
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Boolean algebras in classical propositional logic. We show in particular that
two known sheaf representations of MV-algebras are both consequences of
the results proved in Chapter 3. Moreover, these methods also allow us to
prove an MV-algebraic generalization of a classical theorem by Kaplansky,
which says that two compact Hausdorff spaces are homeomorphic if the
lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.
In Chapter 5, we study a non-commutative generalization of lattices, skew
lattices, and show how they capture certain algebraic structure intrinsic to
sheaves. A typical example of a skew lattice is the collection of partial func-
tions from a set X to a set Y, equipped with two binary operations called re-
striction and override. Here, the restriction of f by g is defined as the function
which takes the value of f only if both f and g are defined, and the over-
ride of f by g is the function which takes the value of g if it is defined, and
the value of f otherwise. These operations are clearly non-commutative.
Equipping X with a topology and letting the co-domain Y vary over X, this
construction can be generalized to local sections of sheaves over Priestley
spaces. The main result of Chapter 5 establishes a duality between skew
distributive lattices and sheaves of sets over Priestley spaces, thus general-
izing Priestley duality to a non-commutative setting.

In the final chapter of this thesis, Chapter 6, we continue our study of gener-
alizations of Stone-Priestley duality for distributive lattices. We come back
to the connection between duality and order completions that we pointed
out in Chapter 1, and use it to study topological duality for bounded lat-
tices in general, dropping the axiom of distributivity. While doing so, we
develop the distributive envelope for a lattice, an order-theoretical construc-
tion that could be of interest independent from topological duality.

Relevant publications

e Chapter 2 is a modified version of the publication [72].

e The results in Chapter 3 will be the topic of [63].

o Chapter 4 is based on the results in [65], currently under submission.
e Chapter 5 is a modified version of the publication [8].

e Chapter 6 is a modified version of the publication [64].

o We refer the interested reader to the publication [34], which was also
written as part of the author’s PhD project. Since [34] is thematically
less closely related to our other publications listed above, we chose
not to include it in this thesis, also in order to avoid an overly long
document. A version of the paper [34] can also be found in [32, Chap-
ter 2].
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Chapter 1. Stone duality and completions

In this preliminary chapter, we will first recall the basics of duality theory for
Boolean algebras and distributive lattices. We will then discuss the relation be-
tween duality theory and order completions, with a particular focus on canonical
extensions and frame completions.

1.1. Stone duality and its successors

The starting point of duality theory was a representation of Boolean alge-
bras by Stone, which he called the “perfect representation” ([137, Section
4.3]). This representation confirmed the idea that the axioms for Boolean
algebras precisely captured the “algebra of classes”, that is, the structure of
the collection of subsets of a given set. Moreover, it provided a first connec-
tion between Boolean algebras and certain topological spaces. In modern
terms, Stone’s representation theorem can be stated as follows.

Theorem 1.1.1 (Theorem 67, [137]). For every Boolean algebra B, there exists
a unique embedding of Boolean algebras ng : B — P(X) for which the topology,
T, on X that is generated by the image of np is compact and Hausdorff.

We highlight a few aspects of the proof of this theorem, which also allows
us to fix some notation. One may first show by topological arguments that
if g is an embedding such as in the statement, then (X, 7) is homeomor-
phic to the space of homomorphisms from B to 2, the two-element Boolean
algebra. Here, the topology on the space of homomorphisms is inherited
from the product topology on 28, where 2 has the discrete topology. There-
fore, to prove that #p exists, one may now define X to be the space of ho-
momorphisms B — 2 and 53 : B — P(X) the map that sends b to the
set b := {x € X | x(b) = 1}. The key part of the proof is to show that
1 is injective; this is essentially the content of Stone’s prime ideal theorem
[137, Theorem 64], also known as the ultrafilter lemma, which uses the ax-
iom of choice. For the proof of the ultrafilter lemma in modern notation,
see [36, Theorem 10.17], or see the proof of Theorem 2.5.2 in Chapter 2 of
this thesis, which generalizes, and was inspired by, the ultrafilter lemma.
The topological space (X, T) that is uniquely associated to a Boolean alge-
bra B by Theorem 1.1.1 is called the (Stone) dual space of B, and will also be
denoted by B,.

Remark 1.1.2. Let X be the dual space of a Boolean algebra B. Notice that
the subsets of X of the form b, for b € B, are clopen (closed and open) in

15



16 Chapter 1. Stone duality and completions

the topology on X. Using compactness of X, one may also show that, con-
versely, any clopen set is of the form b for some b € B. Thus, the clopen sets
in X are exactly the sets of the form E, for b € B, and these form a basis for
the topology.

Definition 1.1.3. A topological space is Boolean! if it is compact, Hausdorff,
and the clopen sets form a basis.

Theorem 1.1.4 (Stone duality for Boolean algebras [137]). The category of
Boolean algebras with homomorphisms is dually equivalent to the category of
Boolean spaces with continuous functions.

We briefly recall how the dual equivalence in this theorem works. If X
is a Boolean space, then the collection of clopen subsets forms a Boolean
algebra, that we will denote by X*. Moreover, any continuous function f :
X — Y yields a homomorphism of Boolean algebras f* := f~1: Y* — X*.
Note that (—)* turns the order of arrows around and preserves composition
and identity: it is a contravariant functor. In the other direction, there is a
contravariant functor (—). which sends a Boolean algebra to its dual space
B,, and a homomorphism / : B — C to a continuous function k. : C, — B
defined by “precomposing with h”, using that the points of the dual space
are themselves homomorphisms to 2. To prove Theorem 1.1.4, one now
shows that the functors are mutually inverse up to natural isomorphism.
For more details, cf., e.g., [93, Sections 3.7 and 3.8].

Remark 1.1.5. A homomorphism x from a Boolean algebra B into 2 can
alternatively be described by the prime filter Fy := x~1(1) or the prime ideal
Ly := x~1(0).

Stone published the theory described above in 1936 [137]. Little more than
a year later, he published a generalization of these results to distributive lat-
tices [138], that we will recall in Theorem 1.1.7 below. Birkhoff had already
proved a representation theorem for distributive lattices in 1933 [13], but
had not been concerned with the topological aspects of the theory. The con-
struction of the dual space of a distributive lattice is completely analogous
to the Boolean case. However, since Remark 1.1.2 only applies to Boolean
algebras, the sets which represent the lattice are no longer clopen, but only
compact-open. Thus, the dual spaces of distributive lattices no longer need
to be Boolean. The definition of the relevant class of spaces, that we recall
below, is more involved than that of Boolean spaces. It must have looked
even less natural at the time of its publication, when non-Hausdorff spaces

1We follow Stone’s terminology [136]. Boolean spaces are also called Stone spaces in the
literature (e.g. [82]), but we choose to avoid that name, as it has also been used for other
classes of spaces, e.g. in [4].
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were hardly ever considered; even Stone himself seems to have been some-
what dissatisfied with the definition, cf. the introduction of [138].

Definition 1.1.6. A topological space is sober if every non-empty closed set
that can not be written as the union of two smaller closed sets is the closure
of a single point. A topological space is spectral® if it is Ty, sober, and the
collection of compact-open sets forms a basis for the open sets that is closed
under finite intersections.

Observe that a spectral space is Hausdorff if, and only if, it is Boolean. There
is a particular subclass of continuous maps between spectral spaces which
correspond to distributive lattice homomorphisms. We say that a function
f + X — Y between spectral spaces is perfect if the inverse image under f
of any compact-open set in Y is compact-open in X. Notice that a perfect
map is in particular continuous, but that the converse does not hold. (We
will reconsider the full class of continuous maps between spectral spaces in
Section 2.2 in Chapter 2 below.) With these definitions, the following may
be proved in an analogous way to Theorem 1.1.4:

Theorem 1.1.7 (Stone duality for distributive lattices [138]). The category of
distributive lattices with homomorphisms is dually equivalent to the category of
spectral spaces with perfect functions.

In this duality, a spectral space X corresponds to its distributive lattice X*
of compact-open subsets. Conversely, the Stone dual space D, of a distribu-
tive lattice D is defined as the set of homomorphisms D — 2, equipped
with the topology generated by the basis {d | d € D}, where d is the set of
homomorphisms which send d to 1.

Example 1.1.8. The prime ideal spectrum of a commutative unital ring R,
equipped with the Zariski topology, is a spectral space X. The distributive
lattice corresponding to the spectral space X can be constructed directly
from the ring R, namely as the lattice of finitely generated radical ideals.
Hochster [80] proved that any spectral space arises as the prime ideal spec-
trum of some commutative unital ring. Also see Banaschewski [6].

Priestley [127], in the paper based on her PhD thesis, gives a considerably
cleaner presentation of duality for distributive lattices. Priestley’s duality
is based on a category of ordered topological spaces, which goes back to
Nachbin [122], also see Section 2.1 below.

Definition 1.1.9. A Priestley space, or compact totally order-disconnected space,
is a tuple (X, 7, <), where T is a compact topology on X and < is a partial

2The name spectral space seems due to Hochster [80]. These spaces have also been called
Stone spaces [4] or coherent spaces [82] in the literature.
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order on X, such that, for any x,y € X, if x ﬁ y, then there exists a clopen
downset K such that y € Kand x ¢ K.

Note that the condition that Boolean spaces have a basis of clopen sets can
be reformulated as: if x # y then there is a clopen set K containing iy and not
containing x. Therefore, the topological space underlying a Priestley space
is always Boolean, and Boolean spaces correspond precisely to Priestley
spaces in which the order is trivial.

Theorem 1.1.10 ([127]). The category of distributive lattices with homomor-
phisms is dually equivalent to the category of Priestley spaces with continuous
order-preserving functions.

In this dual equivalence, given a Priestley space X, the associated distribu-
tive lattice is the lattice of clopen downsets of X, that we shall also® denote
by X*. The Priestley dual space D, of a distributive lattice D can be defined
as follows. The points of D, are the same as in Stone’s duality, namely
the homomorphisms D — 2. The key idea is now to use the sets d and
their complements to generate a topology 7 on D,. This topology refines
Stone’s topology on the dual space of a distributive lattice (also see Exam-
ple2.1.11.2 in Chapter 2 for a more precise statement of the relation between
the two topologies). The order on D; is the reverse of the pointwise order,
that is, x < x’ if, and only if, x’(d) = 1 implies x(d) = 1foralld € D.
One may then show that D, is a Priestley space and that any distributive
lattice D is isomorphic to the clopen downsets of its Priestley dual space
D,. The treatment of morphisms is analogous to that in Stone duality, cf.
the remarks after Theorem 1.1.4 above.

We end this section by giving two example applications of Priestley duality,
each of which will be used later in this thesis.

Example 1.1.11 (Lattice quotients and closed subspaces). By Priestley du-
ality, epimorphisms in the category of distributive lattices correspond to
monomorphisms in the category of Priestley spaces. In particular, let D
be a distributive lattice with Priestley dual space X. The epimorphisms
whose domain is D can be described, up to isomorphism, by congruences
on D. The monomorphisms whose codomain is X can be described, up to
isomorphism, by closed subspaces of X. This argument shows that there
is a bijective correspondence between congruences on D and closed sub-
spaces of X, which is moreover order-reversing, by naturality of the dual

3Note that we use the same notation, (—)*, for Stone’s and Priestley’s duals. This can not
lead to confusion, as a space X which is simultaneously a Priestley space and a spectral space
must be Boolean, and the two definitions of X* coincide in this case. Similar remarks apply to
the notation (—).
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equivalence. We now give a concrete, and slightly more general, descrip-
tion of this correspondence between congruences on a distributive lattice
and closed subspaces of its Priestley dual space.

Proposition 1.1.12. Let D be a distributive lattice and let X be its Priestley dual
space. There is a contravariant Galois connection between the subsets of D x D
and the subsets of X, given by

ﬂngDF—>¢wp=pex|meeﬂweaexem}

scx H%¢6%z{@@€DXD|WES@EﬁHxG@}

Moreover, for @ C D x D, we have ¢ = @(y(9)) if, and only if,  is a distributive
lattice congruence. Also, for S C X, we have S = ¢(¢(S)) if, and only if, S is
closed in X. In particular, ¢ and 1 establish an isomorphism between the poset
of congruences of D, ordered by inclusion, and the poset of closed subsets of X,
ordered by reverse inclusion.

Proof. See, e.g., [128, Lemma 12] or [36, 11.32]. O

Example 1.1.13 (Center and Booleanization of a distributive lattice). Let I
denote the full and faithful inclusion functor of the category of Boolean
algebras in the category of distributive lattices. The functor I has a right
adjoint, which is given on objects by taking the center of a distributive lattice
D, i.e., the Boolean subalgebra consisting of the complemented elements
of D. The functor I also has a left adjoint, called free Boolean extension or
Booleanization, that we describe now.

Proposition 1.1.14. Let D be a distributive lattice. The following Boolean alge-
bras are isomorphic, and both are Booleanizations of D:

1. the Boolean algebra of clopen subsets of the Priestley dual space D of D;
2. the center of the congruence lattice of D.

Proof. Observe that if D < B is a lattice embedding of D into any Boolean
algebra B, then the Boolean algebra generated by the image of D is isomor-
phic to the Booleanization of D. It thus suffices to show that any clopen
subset of D, is a Boolean combination of clopen downsets. This follows by
a standard argument from the definition of the topology and the fact that
D, is compact. Now observe that the isomorphism between the congruence
lattice of D and the closed subsets of D, (Proposition 1.1.12) restricts to an
isomorphism between the centers of these two lattices. O
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We remark that the isomorphism between (1) and (2) in Proposition 1.1.14
can be restricted further to the factor congruences of D, i.e., those congru-
ences in the center which moreover permute with their complement. A
simple argument shows that the factor congruences of D correspond to the
clopen subsets of D, which are both downsets and upsets.

1.2. Order completions: duality in algebraic form

Stone’s duality provided a framework for studying Boolean algebras and
the homomorphisms between them. However, in the years after Stone’s
work, the need arose to study functions on Boolean algebras which do not
preserve all the Boolean operations, but, e.g., only preserve V and 0, but not
necessarily A and 1. Such functions are called (unary) operators on Boolean
algebras. The interest in operators on Boolean algebras motivated Jénsson
and Tarski [84, 85] to give an algebraic formulation of Stone’s duality for
Boolean algebras.

Theorem 1.2.1 ([84], Theorems 1.22-1.24). For any Boolean algebra B, there
exists a unique embedding of Boolean algebras B — C into a complete Boolean
algebra C satisfying the following two properties:

1. foranyu € C,u =\V{AS|SCB,AS <u};

2. for any subset T C B, if 1 < \/ T in C, then there exists a finite subset
T' C Tsuchthat1 < \/ T in B.

The unique complete Boolean algebra C and the embedding B < C are
called the canonical extension of B and denoted by B — B°. There is an ob-
vious structural similarity between this theorem and Stone’s representation
theorem (Theorem 1.1.1). Indeed, it is not hard to verify that the embedding
B — P(X), with X the Stone dual space of B, satisfies conditions (1) and
(2) in this theorem. However, Theorem 1.2.1 can also be proved by a purely
algebraic construction, without using the axiom of choice*. One may then
deduce Stone’s theorem from Theorem 1.2.1 by observing that, using the ax-
iom of choice, the canonical extension of a Boolean algebra is isomorphic to
the power set algebra of its set of atoms. Thus, completion describes duality in
algebraic form.

Gehrke and Jénsson [56] generalized Theorem 1.2.1 and the ensuing theory
to the setting of distributive lattices, and Gehrke and Harding [54] subse-
quently observed that essentially the same methods work for lattices which
are not necessarily distributive. In Chapter 2 of this thesis, we will further
generalize canonical extensions to proximity lattices. We now recall the rel-
evant definitions and facts from [54].

“We will give one such proof, in a more general setting, in Section 2.4 (p. 41 and further).



1.2. Order completions: duality in algebraic form 21

Definition 1.2.2. Let L be a lattice. A canonical extension of L is an embed-
ding e : L — C of L into a complete lattice C satisfying

1. forallu € C,
\/{/\e[S} |SC L Aels] < u} :uz/\{\/em ITCLu< \/em};

2. forall S, T C L, if Ae[S] < Ve[T] in C, then there are finite S’ C S and
T' C Tsuchthat AS’ <V T'in L.

The first property is commonly referred to as denseness, the second as com-
pactness.

Theorem 1.2.3. Let L be a lattice. There exists a canonical extension e : L — C.
Moreover, ife : L < Cand ¢’ : L — C' are canonical extensions of L, then there
is a complete lattice isomorphism ¢ : C — C' such that poe = ¢€'.

Proof. See [54, Prop. 2.6 and 2.7]. O

As is common in the literature and justified by this theorem, we will speak
of the canonical extension of a lattice L and we will denote it by L. Often,
with the exception of Chapter 2, we will omit reference to the embedding
e, and regard L as a sublattice of L°. The join-closure of L inside L° is iso-
morphic to the ideal completion (or frame completion, cf. Example 1.2.8) of
L, and its elements are therefore known as the ideal elements of L°. Similarly,
the closure of L under infinite meet inside L° is isomorphic to the filter com-
pletion or dual frame completion of L, and is the set of filter elements of L°.
The elements of L are characterized in L° as exactly those which are both
filter and ideal elements. See [54, Lemma 3.3] for proofs of the facts men-
tioned in this paragraph.

Again, using the axiom of choice, one can deduce that the canonical exten-
sion of a lattice ‘has enough points”:

Proposition 1.2.4 (Canonical extensions are perfect lattices). Let L be a lattice.
The set of completely join-irreducible elements J*(L%) of the canonical extension
\/-generates L, and the set of completely meet-irreducible elements M (L°) of the
canonical extension )\-generates L°.

Proof. See [54, Lemma 3.4]. O

Example 1.2.5. Notice that any completely join-irreducible element is a fil-
ter element. If D is a distributive lattice, then the set | (D‘5 ), ordered by the
restriction of the order of D?, is isomorphic to the partially ordered set of
prime filters of D, ordered by reverse inclusion. Using Remark 1.1.5, which
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equally applies to distributive lattices, this is the partially ordered set un-
derlying the Priestley dual space D of D. Under this view, the set d, for
d € D, is simply the intersection of the downset of d in D’ with J*(D°).
One may then show that the canonical extension D —> DY is, up to isomor-
phism, the map d d from D to the downsets of the Priestley dual space
D., cf. [54, Remark 2.10].

The above example motivated the work in Chapter 6, where we will study
topological duality for lattices in general, using canonical extensions.

We have already emphasized that canonical extensions provide an alge-
braic view of duality. Recall that the goal of Jénsson and Tarski [84] was
to study generalizations of homomorphisms between Boolean algebras. In
fact, any function between lattices can be extended to the canonical exten-
sion in a fairly straightforward manner. We will study extensions of oper-
ations in the more general context of proximity lattices in Chapter 2, and
we will use the theory of extensions of operators on distributive lattices in
Chapter 4. We defer the statement of the relevant definitions to those chap-
ters.

There is a different algebraic approach to duality theory, which uses frames
(or locales). The idea in this field of research is similar to that of canonical
extensions, namely to abstract away from the underlying set of points, thus
avoiding the use of choice principles. We now recall the basics of this theory,
referring to, e.g., [124] or [82, Ch. II] for more details.

Definition 1.2.6. A frame is a complete lattice L such that, for any a € L
and B C L,aA(VB) = Vpep(aAb). A frame homomorphism is a function
between frames which preserves finite meets and arbitrary joins.

For any topological space X, its lattice of open sets, ((X), forms a frame. A
continuous function X — Y yields a frame homomorphism Q(Y) — Q(X),
by taking inverse image. This defines a contravariant functor from topo-
logical spaces to frames. In an analogous way to Stone duality, one can
also associate a space to any frame: for L a frame, let pt(L) denote the
set of frame homomorphisms from L to 2. Frame homomorphisms into 2
are called points of the frame L, and can alternatively be described as the
A-irreducible elements of L. As in Stone duality, elements a of the frame
yield subsets @ of pt(L), which can be used to generate a topology on pt(L).
Note that pt extends to a functor from frames to topological spaces in the
same way as Stone’s functor (—).. There is, however, an important differ-
ence with Stone duality. The functors () and pt still form a dual adjunc-
tion between the category of topological spaces and the category of frames
[124, Proposition 7]. However, the two functors do not form a dual equiva-
lence between these two categories [124, p. 4]. By general category theory,
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any dual adjunction between categories can be restricted to a dual equiva-
lence between (possibly empty) full subcategories. In particular, the dual
adjunction (Q), pt) yields a dual equivalence between the following two
(non-trivial) categories of frames and spaces. Call a frame spatial if it is
isomorphic to a frame of the form Q(X) for some topological space X (cf.,
e.g., [124, Proposition 5] for an equivalent characterization of spatiality). A
Ty space is homeomorphic to pt(L) for some frame L if, and only if it is sober
(cf. Definition 1.1.6 above), or “plein” (French: full), as it was called in [124].

Theorem 1.2.7 ([124], Corollaire after Proposition 7). The functors Q) and pt
form a dual equivalence between the category of spatial frames and the category of
sober spaces.

Example 1.2.8. Let X be a spectral space and let D := X* be its distribu-
tive lattice of compact-open sets. The frame of open sets ()(X) is the frame
completion of D, i.e., the image of D under the left adjoint to the inclusion of
the category of frames into the category of distributive lattices. Since X is
sober, it is isomorphic to the space of points of the frame completion of D.
Thus, the Stone dual space X of a distributive lattice D may be alternatively
described as the space of points of the frame completion of D.

Comparing Examples 1.2.5 and 1.2.8, we see that both the canonical ex-
tension and the frame completion can be used to construct dual spaces for
distributive lattices. We will introduce yet another “enveloping” construc-
tion, for lattices, in Chapter 6, and use it to study topological duality for
lattices in general. Also note that Booleanization (Example 1.1.13) is an en-
veloping construction from which the Priestley dual space of a distributive
lattice can be reconstructed, using Stone’s duality for Boolean algebras [51,
Section 6].

The connection between the canonical-extension-approach and the frame-
theoretic approach to duality seems an interesting one to explore further;
we mention two recent works in this direction. Erné [42, Section 9] con-
structed a “canonical envelope” for spatial preframes. It is not hard to see
that, in the case where the preframe is the frame completion of a distribu-
tive lattice D, the canonical envelope in the sense of [42] coincides with the
canonical extension of D. In a somewhat different direction, Coumans [33]
defined canonical extensions for coherent categories and related it to the
topos of types, which is the category of sheaves over a certain frame.
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Chapter 2. Duality and canonical exten-
sions for stably compact spaces

In this chapter, we construct a canonical extension for strong proximity lattices
in order to give an algebraic, point-free description of a finitary duality for stably
compact spaces. In this setting not only morphisms, but also objects may have
distinct 7t- and o-extensions. This chapter is a modified version of the paper [72].

Strong proximity lattices were introduced, after groundwork of Smyth [135],
by Jung and Stinderhauf [88], who showed that these structures are in a
dual equivalence with stably compact spaces. Stably compact spaces gen-
eralise spectral spaces and are relevant to domain theory in logical form (cf.
for example [1], [86] and [100]). In this chapter, we re-examine the Jung-
Siinderhauf duality [88] and put it in a broader perspective by connecting
it with the theory of canonical extensions.

Outline of the chapter. We first introduce stably compact spaces, mo-
tivated by their close relationship with compact ordered spaces, in Sec-
tion 2.1. In Section 2.2, we set up the categorical preliminaries for duality for
stably compact spaces: we relate stably compact spaces to spectral spaces
via the Karoubi envelope construction, and we recall the duality between
continuous functions on spectral spaces and join-approximable relations on
the dual distributive lattices. In Section 2.3, we then discuss proximity lat-
tices, which are algebraic structures that axiomatize the bases of opens of sta-
bly compact spaces and the relation of way-below-ness, where an open set
is way below another open set if there is a compact set in between the two.
Continuous functions between stably compact spaces correspond to rela-
tions between the bases, so that the natural morphisms between proximity
lattices are relations, rather than functions. The Karoubi envelope construc-
tion is then used to give an abstract categorical proof of a duality between
proximity lattices and stably compact spaces. The most important original
contribution in this chapter is in Section 2.4, where we introduce and study
canonical extensions for proximity lattices with one additional strongness
condition. For a proximity lattice that is a basis of open sets for a stably com-
pact space, this strongness condition expresses exactly when an open set is
way below the union of a finite collection of open sets. Still in Section 2.4,
we start the study of the canonical extensions of morphisms. In Section 2.5,
we show how the duality that we obtained via the Karoubi envelope relates
to the round spectrum of a proximity lattice [88]. Moreover, we show that,
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in the distributive case, canonical extensions of proximity lattices precisely
describe their round spectra. We then compare the work in this chapter
to the existing literature on this topic and list possible directions for future
work.

2.1. Compact ordered and stably compact spaces

In order to motivate the definition of stably compact spaces, we first recall
the definition of compact ordered spaces [122].

Definition 2.1.1. A compact ordered space is a triple (X, T, <), where (X, 7) is
a compact topological space, and < is a partial order on X which is closed
as a subset of the product space (X, 7) x (X, 7).

The condition that < is closed can be rewritten as a separation property: if
x £ y, then there exist open sets U and V in X such that x € U, y € V, and
(UxV)N<=0.

Example 2.1.2 (Compact ordered spaces). 1. The real unit interval [0, 1]
with its usual Euclidean topology and its usual order is a compact
ordered space.

2. Any Priestley space is a compact ordered space. Indeed, a short topo-
logical argument shows that Priestley spaces are exactly those com-
pact ordered spaces with the additional property that any open down-
set is a union of clopen downsets.

3. Any compact Hausdorff space can be made into a compact ordered
space by equipping it with the trivial order, =.

Stably compact spaces form the purely topological analogue of compact or-
dered spaces. As we shall see in Theorem 2.1.10, stably compact spaces
can precisely encode the order structure of compact ordered spaces in their
topologies. Let us recall the definition of stably compact spaces.

Definition 2.1.3. Let X be a topological space. A set S C X is called satu-
rated if it is an intersection of open sets, and compact if any open cover of S
contains a finite subcover. The space X is called locally compact if, for any
open neighbourhood U of a point x € X, there exists an open set V and a
compact set K such that x € V C K C U. Finally, X is called stably compact if
X is Ty, sober, locally compact, and the collection of compact-saturated sets
is closed under finite intersections.

Example 2.1.4 (Stably compact spaces). 1. The real unit interval [0, 1]
with the topology T+, consisting of those sets which are open in the
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Euclidean topology and downsets in the usual order, forms a stably
compact space. Moreover, a countable basis for this topology is given
by the sets of the form [0, 7), where g € [0,1] N Q. Similarly, the topol-
ogy t! of Euclidean-open upsets is stably compact.

2. Any spectral space is a stably compact space. Indeed, spectral spaces
are exactly those stably compact spaces in which the compact-open
sets form a basis which is closed under finite intersections.

3. Any compact Hausdorff space is a stably compact space.

The reader will have noted the similarity in the lists of Examples 2.1.2 and
2.1.4. This is no coincidence; in fact, the construction of the topology T+
of open downsets (or the topology 7' of open upsets), which was given
for the real unit interval [0, 1] in Example 2.1.4.1, can be performed for any
compact ordered space and always results in a stably compact space, see
Theorem 2.1.10 below.

Definition 2.1.5. Let (X, T) be a topological space. The specialization pre-
order! on X is defined by

x <¢ yif, and only if, for all open U, if y € U then x € U.

Note that x <; y is equivalent to saying that y is in the 7-closure of {x}.
Also, a topological space (X, 7) is Ty if, and only if, <; is anti-symmetric,
i.e., a partial order. Finally, we remark that the topological property of be-
ing saturated (i.e., an intersection of open sets) is equivalent to the order-
theoretic property of being downward closed in the preorder <;. In particu-
lar, open sets are downsets.

Example 2.1.6 (Specialization orders). 1. Recall that T+ denotes the topol-
ogy of open downsets on [0,1]. The specialization order of T+ is the
usual order of the real unit interval. The specialization order of [0, 1]
with the topology of Euclidean-open upsets 7! is the opposite of the
usual order of the real unit interval.

2. The specialization order of a spectral space, when viewed as the space
of prime ideals of a distributive lattice, is the inclusion order.

3. The specialization order of a compact Hausdorff space is the trivial
order, —=.

TFor many authors (e.g. [67], [86]), open sets are upsets rather than downsets, and they
therefore define the specialization preorder as the opposite of the preorder defined here. In
this thesis, we choose to think of open sets as downsets, as this fits well with Stone-Priestley
duality for distributive lattices (cf. Section 1.1 above.) This choice ultimately amounts to a
matter of taste, which will not be disputed any further at this point.
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We see from Example 2.1.6.1 that the order of the unit interval [0, 1] can be
recovered from the topology of open downsets alone. Can one also recover
the usual Euclidean topology on [0, 1]? The positive answer to this question
relies on the general construction of the co-compact dual topology, that we
recall now.

Definition 2.1.7. Let (X,p) be a topological space. Let p? be the topol-
ogy generated by the complements of p-compact-saturated sets. We call the
space (X, p?) the co-compact dual®> of X, and denote it by X°.

In a stably compact space, finite unions and arbitrary intersections of
compact-saturated sets are still compact-saturated (cf. [86, Lemma 2.8]).
Therefore, if (X, p) is stably compact, then the collection of complements of
compact-saturated sets already forms a topology, which is then by defini-
tion the co-compact dual p°. In fact, more is true:

Theorem 2.1.8 ([86], Theorem 2.12). Let X be a stably compact space. Then
X9 is stably compact, and (X°)? is equal to X. In particular, the open sets of X are
precisely the complements of compact saturated sets of X°.

Example 2.1.9 (Co-compact duals). 1. The compact-saturated sets in
[0,1] with the topology T+ of Euclidean-open downsets are exactly
the downsets that are closed in the Euclidean topology. Thus, the co-
compact dual topology of T+ is the topology of Euclidean-open up-
sets, that is, (t+)? = 7'. Note that the Euclidean topology on [0,1]
is the smallest topology containing both the topology T+ and its co-
compact dual.

2. If a spectral space X is the Stone dual space of a distributive lattice D,
then the co-compact dual of X is the Stone dual space of the opposite
distributive lattice D°P.

3. The co-compact dual of a compact Hausdorff space is equal to the
space itself.

Mimicking item (1) in the above list of examples, for any space (X, p) we
can define the patch topology p? as the smallest topology containing both p
and p?. Conversely, for an ordered topological space (X, T, <), we let T+
denote the topology of open downsets, and 7! the topology of open upsets.
With these constructions in mind, we now recall the following theorem,
which seems to be folklore.

2The germ of the idea of the co-compact dual topology appeared in De Groot [74], and it
also figures more or less explicitly in Hochster [80]. Some authors thus refer to this topology
as the “de Groot dual” or “Hochster dual” topology.
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Theorem 2.1.10. If (X, p) is a stably compact space, then (X, p¥, <,) is a com-
pact ordered space. If (X, T, <) is a compact ordered space, then (X, V) is a stably
compact space. Moreover, these two constructions are mutually inverse.

Proof. See [86, Section 2]. O

Example 2.1.11 (Patch topologies). 1. As we have already seen above,
the patch topology of ([0,1],+) is simply the Euclidean topology on
[0,1], and the specialization order is the usual order.

2. If (X, p) is the Stone dual space of D, then (X, p¥, <) is the Priestley
dual space of D.

3. If (X, p) is a compact Hausdorff space, then p? = p = p?, and <,, is
the trivial order.

Theorem 2.1.10 can be extended to an isomorphism of categories. The nat-
ural maps between compact ordered spaces are those which are continu-
ous and order-preserving. The corresponding concept for stably compact
spaces is a bit less natural, and a large part of this chapter will in fact be
concerned with relaxing the definition of morphism between stably com-
pact spaces.

Definition 2.1.12. A function f : X — Y between stably compact spaces is
called perfect if f~1(U) is open for any open set U C Y (i.e., f is continuous)
and f~1(K) is compact for any compact-saturated set K C Y.

Corollary 2.1.13. The category of compact ordered spaces with continuous order-
preserving maps is isomorphic to the category of stably compact spaces with perfect
maps.

Proof. The object assignments of Theorem 2.1.10 can be extended to func-
tors, which act as the identity on morphisms. O

The category of compact ordered spaces admits an involution which sends
a compact ordered space (X, 7, <) to (X, T, >), the same topological space
with the opposite order, and is the identity on morphisms. In the isomor-
phic category of stably compact spaces, this involution is given by the co-
compact dual construction: for (X, 7, <) a compact ordered space, we al-
ways have (t+)? = 7.

In this section, we have discussed the correspondence between a class of
order-topological spaces and a class of Tj topological spaces. In the next
sections, we will see how these classes can be represented dually as dis-
tributive lattices with additional structure. This will in particular lead us to
consider the question of representing continuous, rather than perfect, maps
between stably compact spaces.
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2.2. Continuous retracts and the Karoubi envelope

The starting point of lattice representations of stably compact spaces is the
following theorem, which relates stably compact spaces to spectral spaces.
Recall that a continuous retraction on a space X is a continuous function
f X — X such that f(f(x)) = f(x) for all x € X, or, more concisely, it
is an idempotent morphism in the category of topological spaces and con-
tinuous functions.

Theorem 2.2.1. Let Y be a topological space. Then Y is stably compact if and
only if there exists a spectral space X and a continuous retraction f on X such that

Y = f(X).
Proof. See [82, Theorem VIL.4.6], where a similar statement is proved about
stably locally compact locales. Stably compact spaces are sober, so the cor-

responding fact about locales is in fact equivalent to the present theorem (if
we admit the axiom of choice). O

Using this theorem, we will show (Theorem 2.2.4) that the inclusion of
the full subcategory of spectral spaces into the category of stably compact
spaces with continuous maps can be described categorically as a splitting by
idempotents or Karoubi envelope, also known as Cauchy completion or idempo-
tent completion.

Definition 2.2.2. An idempotent in a category C is an endomorphism f such
that f2 = f. We say an idempotent f : X — X splits if there are morphisms
r: X = Yands : Y — X suchthatsr = f and rs = idy. A category
is Cauchy complete if all idempotents split. A full and faithful functor i :
C — C° is called a Karoubi envelope of C if it is a universal arrow from C
into a Cauchy complete category. More explicitly, if C — D is a functor and
D is Cauchy complete, then there is an up to natural isomorphism unique
factorisation of this functor through the functor i.

Note that two Karoubi envelopes of the same category are equivalent, and
that if C and C’ are equivalent categories, then so are C* and (C’)’. Notice
also that the category (C®)°P is isomorphic to (C°P)?, since ‘idempotent’ is a
self-dual concept. The following lemma will be useful in what follows.

Lemma 2.2.3. Suppose that i : C — D is a full and faithful functor such that
(1) for any idempotent morphism f in C, its image i(f) splits; and (2) any object
D of D is a retract of an object i(C), where C € C. Then i : C — D is the Karoubi
envelope of C.

Proof. From the two assumptions, one may prove that D is Cauchy com-
plete. The universal property then follows from standard arguments, see
e.g. [16, Proposition 6.5.9]. O
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Using Lemma 2.2.3, one may show that any category C has a Karoubi en-
velope: it can be constructed as the category D whose objects are the idem-
potent morphisms of C and whose morphisms g : f — f’ are morphisms
¢ :dom(f) — dom(f’) in C such that f'¢ = ¢ = ¢f. The functori: C — D
sends any object X to idx and any morphism g in C to itself, considered as

a morphism idgom(g) — idcod(q) in D-

Theorem 2.2.4. The inclusion functor of the full subcategory of spectral spaces
into the category of stably compact spaces with continuous maps is a Karoubi en-
velope.

Proof. Apply Lemma 2.2.3: condition (1) of the lemma holds by the ‘if’-
direction of Theorem 2.2.1, and (2) holds by the ‘only if’-direction of that
theorem. O

In light of Theorem 2.2.4, a stably compact space X can be properly un-
derstood as a spectral space ‘enriched” with a continuous retraction whose
image is the space X. This naturally leads to the idea of dually representing
stably compact spaces by distributive lattices that are also enriched with
additional structure. To see what additional structure is required, we recall
an extension of Stone duality for distributive lattices (cf. Theorem 1.1.7) to
the category of spectral spaces with continuous rather than perfect maps
(also see, e.g., [2, Section 7.2]).

Definition 2.2.5 ([2], Definition 7.2.24). Let L and M be lattices. A join-
approximable relation R : L + M is a relation R C L x M that satisfies the
following conditions, for all a,a’ € L, b,b' € M, and finite subsets A C L,
B C M:

(a) ifa’ > aRb > ', then a’RV/,

(b) if, forall b € B, aRb, then aR(\/ B),

(c) if, foralla € A, aRb, then (\ A)RD,

(d) if (\V A)RD, then there exists finite B' C AR(_) such thatb < \/ B'.3

Lattices with join-approximable relations form a category under relational
composition: the relational composition of two join-approximable relations
is join-approximable, and, for any lattice L, the reverse order, >, is a join-
approximable relation which acts as an identity for relational composition.
The following theorem is the raison d’étre of join-approximable relations.

3 Here and in what follows, AR(_) is shorthand for {b € M | Ja € L such that aRb}. Simi-
larly, (-)RB denotes the set {a € L | 3b € M such that aRb}.
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Theorem 2.2.6 ([2], Proposition 7.2.5). The category of spectral spaces and
continuous functions is dually equivalent to the category of distributive lattices
and join-approximable relations.

Before we discuss the proof of Theorem 2.2.6, we immediately remark that
combining Theorems 2.2.6 and 2.2.4 yields the following (admittedly rather
abstract) dual equivalence for stably compact spaces.

Corollary 2.2.7. The category of stably compact spaces and continuous functions
is dually equivalent to the Karoubi envelope of the category of distributive lattices
and join-approximable relations.

In the next section, we will discuss how the Karoubi envelope of the cat-
egory of distributive lattices and join-approximable relations can be more
concretely presented, namely as a category of distributive proximity lat-
tices. We end this section by discussing Definition 2.2.5 and the proof of
Theorem 2.2.6.

A continuous function from a spectral space X to a spectral space Y does
not need to be perfect, and therefore it does not necessarily correspond,
under Stone duality, to a homomorphism from the lattice of compact-open
sets of Y to the lattice of compact-open sets of X. However, given such a
continuous map f : X — Y between spectral spaces, the inverse image
f~Y(K) of a compact-open set K under f is at least open. Therefore, f ~1(K)
is the union of the compact-open sets in X that are contained in it. To a
continuous map f : X — Y, we associate a relation R¢ : E + D from the
lattice E of compact-open sets of Y to the lattice D of compact-open sets of
X, defined by

KR¢L if, and only if, L C fﬁl(K),

for any compact-open sets K C Y and L C X. Note that the assignment
f—=R £is faithful, i.e., different continuous functions yield different dual
relations, as can be proved using the facts that Y is Ty, f is continuous,
and the compact-open sets form a basis of X. Which relations R between
the dual distributive lattices arise in this way? The answer to this question
is given in the following proposition, which justifies the definition of join-
approximable relation given above.

Proposition 2.2.8. Let D and E be distributive lattices with Stone dual spaces X
and Y, respectively, and let R : E - D be a relation. The following are equivalent:

1. There exists a continuous function f : X — Y such that R is equal to Ry;

2. The relation R is a join-approximable relation.
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Proof. This proposition has essentially the same content as [2, Proposition
7.2.25], where it is stated without proof in a point-free setting. We only
sketch the proof, as it is mostly routine. For (1) implies (2), it is straight-
forward to check that if f : X — Y is continuous, then R f satisfies (a)—(c)
in Definition 2.2.5. We give the proof that Ry satisfies (d), to convey the
flavour of the typical argument that is involved here. If (\/ A)Rb, then by
definition b C f~ (e ). For each x € b, pick a, such that x € f~1(a3),
and then, since f~1(ay) is open, pick by € D such that x € by C fHay).
Now (be)x j covers the compact-open set b, so we can pick a finite sub-
cover, which corresponds to a finite B C AR(-) such that b < \/ B'. For
(2) implies (1), suppose that R is join-approximable. For x € X = D, de-
fine its image f(x) to be the point y € Y corresponding to the prime filter
Fy:= ())RFy = {e € E| 3d € F, : eRd}. Indeed, F, is a filter by (a) and (c),
and it is prime by (d). Unravelling the definitions, one shows that for any
e € E, f71(8) = U,rad, so that f is continuous. From the same equality,
compactness of X, and axioms (a) and (b), one deduces that R = Ry. O

Proof of Theorem 2.2.6. Write ()* for the functor that assigns the distributive
lattice of compact-opens X* to any spectral space X, and Ry : Y* + X*
to any continuous function f : X — Y. By Proposition 2.2.8, this func-
tor is well-defined and full to the category of distributive lattices and join-
approximable relations, and we already remarked before Proposition 2.2.8
that the functor is faithful. To prove essential surjectivity of ()*, first note
that isomorphic distributive lattices are also isomorphic in the category of
distributive lattices and join-approximable relations. By Stone duality, any
distributive lattice is isomorphic to the lattice of compact-open sets of its
dual space, and thus also isomorphic to this lattice in the category of dis-
tributive lattices with join-approximable relations. O

2.3. Proximity lattices

Jung and Siinderhauf [88] defined “strong proximity lattices” to obtain alge-
braic structures dual to stably compact spaces. In this section, we will show
that the category of join-strong proximity lattices and j-morphisms is the
Karoubi envelope of distributive lattices with join-approximable relations
(Theorem 2.3.17). It then follows from Corollary 2.2.7 that this category is
dually equivalent to the category of stably compact spaces and continuous
functions.

Definition 2.3.1 (cf. [88]). A proximity lattice is a pair (L, <), where L is a
lattice and < C L x L is a relation satisfying the following axioms:

(a) foranya,b,a’,b' € L,ifa’ <a<b <V, thend <V,
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(b) forany b € L and A C L finite, if, foralla € A,a < b, then VA < b,
(c) foranya € L and B C L finite, if, forallb € B,a < b, thena < A B,

(d) for any a,b € L, a < b if, and only if, there exists ¢ € L such that
a<c=<b.

We write TA for theset {b € L | 3a € A : a < b} and [A for the set
{beL|daecA:b<a}. Aproximity lattice (L, <) is join-strong if, for any
finiteset BC Landa € L,

(js) if a < \/ B, then there exists a finite set B’ C | B such thata < \/ B'.

Dually, a proximity lattice (L, <) is meet-strong if, for any finite set A C L
and b €L,

(ms) if A A < b, then there is a finite set A’ C 1A such that A A’ < b.

A proximity lattice (L, <) is doubly strong if it is both join- and meet-strong.
It is increasing if < refines the lattice order, i.e., < C <.

It follows directly from this definition that if (L, <) is a join-strong proxim-
ity lattice, then (L°P, ~) is a meet-strong proximity lattice. The reader will
also note the similarity between this definition and the definition of join-
approximable relation (Definition 2.2.5). Note, however, that the condition
(js) is slightly different from the condition in Definition 2.2.5(d) applied to
the relation >. Jung and Stinderhauf [88] say they choose condition (js)
over this more obvious condition, because it allows for an axiomatization
that does not mention the lattice order < anywhere. The axiom (I}) that
was considered by Smyth in [135, p. 330] is equivalent to 2.2.5(d) applied to
the relation ~. By the following proposition, for increasing join-strong prox-
imity lattices, the two axioms are equivalent. Moreover, as we will see in
Proposition 2.3.19, increasing join-strong proximity lattices form a category
that is equivalent to the category of all join-strong proximity lattices.

Proposition 2.3.2. Let L be a lattice and < a relation on L.

1. If = : L + L is join-approximable and idempotent, then (L, <) is a join-
strong proximity lattice.

2. If (L, <) is an increasing join-strong proximity lattice, then the relation
>~ : L + L is join-approximable and idempotent.

Proof. Straightforward by comparing Definitions 2.2.5 and 2.3.1. O
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Example 2.3.3. Let X be a stably compact space. Let D be a basis for the
open sets which is closed under finite intersections and finite unions. Note
that D with the inclusion order is a distributive lattice. Define the “way-
below”-relation < on D by

d < e <= there exists a compact-saturated set k C X such thatd C k Ce.

We call (D, <) an open-basis presentation of the space X.

Dually, if E is a ‘basis’ for the compact saturated sets of X (i.e., every compact-
saturated set K of X is an intersection of elements from E) which is closed
under finite unions and intersections, we regard it as a distributive lattice
with the reverse inclusion order. We then define the relation < on E by

k <1 <= there exists an open set u such thatk D u 2 I,

and call (E, <) a compact-saturated-basis presentation of X.

Proposition 2.3.4. 1. An open-basis presentation of a stably compact space
is a join-strong proximity lattice, which is furthermore increasing and dis-
tributive.

2. A compact-saturated-basis presentation of a stably compact space is a meet-
strong proximity lattice, which is furthermore increasing and distributive.

Proof. In both items, it is not hard to check that all the axioms for a prox-
imity lattice are satisfied. The arguments for join- and meet-strongness are
essentially the same as those given in the proof of Theorem 23 in [88]. [

Example 2.3.5. To get a doubly strong proximity lattice representing a sta-
bly compact space, we can construct a lattice of pairs of open and compact-
saturated sets, as was done in section 6 of [88]. We briefly recall this con-
struction.

Let (D, <) and (E, <) be an open-basis and a compact-saturated-basis pre-
sentation of a stably compact space X. Let F be the sublattice of the lattice
D x E°P consisting of those pairs (d, e) for which d C e as subsets of X. De-
fine the relation < on F by (d,e) < (d’,¢') if, and only if, ¢ C d’ as subsets
of X.

Proposition 2.3.6 (Theorem 23, [88]). Let (F, <) be defined as in Example 2.3.5.
Then (F, <) is a doubly strong distributive proximity lattice.

Example 2.3.7. We consider open-basis presentations for the three exam-
ples of stably compact spaces given in Example 2.1.4.
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1. An example of an open-basis presentation for the unit interval [0, 1]
with the topology T+ of Euclidean-open downsets has as its underly-
ing lattice the collection of rational lower open intervals,
D := {[0,9) | g € Q}. Here, the relation < is the strict inclusion or-
der. The collection of all lower open intervals, D’ := {[0,7) | r € R},
also forms a basis, and < is again the strict inclusion order. Note that,
although D and D’ have different cardinalities, (D, <) and (D', <)
present the same stably compact space.

2. Note that any basis for a space X which is closed under finite unions
must contain all compact-open sets of the space. If X is a spectral
space, then the lattice D consisting of compact-open sets is a basis.
The relation < from Example 2.3.3 coincides with the lattice order of
D, and (D, <) is doubly strong.

3. If X is compact Hausdorff and D is a lattice basis of open sets, then
we have d < ¢ if, and only if, the closure of d is contained in e.

The fact that any stably compact space X naturally comes with its co-compact
dual X? (Definition 2.1.7) is reflected in the symmetry of join-strong and
meet-strong proximity lattices, as the following example explains.

Example 2.3.8. If (E, <f) is a compact-saturated-basis presentation of a
stably compact space X, consider the lattice D := {X \ e | e € E}, ordered
by inclusion, and define <p on D by d < d" iff (X \ d') <g (X \ d). Then
(D, <p) is an open-basis presentation of the co-compact dual space X?, the
lattice D is isomorphic to E°P, and <p = >f, modulo the lattice isomor-
phism.

The following observation gives a more algebraic source of examples. If
h : L — M is a surjective lattice homomorphism and <, is a proximity
relation on M, then one may define a proximity relation <j on L by setting
a <y bif, and only if, h(a) < h(b), that is, <, := h~1(<p). Moreover,
(L, <j,) will be join- or meet-strong if <) is. Using these observations, one
may easily construct doubly strong proximity lattices with a non-increasing
proximity relation, as follows.

Example 2.3.9. Let M be a lattice. ~Consider the homomorphism

h @ Frat(M) — M from the free lattice over the set of generators M to the
lattice M, which sends each generator to itself. This homomorphism yields
a doubly strong proximity lattice structure <j on Fi, (M), where <y is
regarded as a doubly strong proximity relation on M. The proximity rela-
tion <, is not increasing, since the generators of Fyo¢(M) form an antichain
in Frat(M). For a more concrete example, consider the homomorphism &
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from the three-element lattice 3 = {0 < x < 1} to 2 that sends x to 1. The
proximity relation < on 3 is not increasing, since 1 <, x but 1 jé X.

Thus, non-increasing proximity relations naturally occur in the context of
presentations of a lattice by generators and relations; also see [2, Section 7].
By Example 2.3.7, two proximity lattices may present the same space, even
if their underlying lattices are not isomorphic. However, one would like
proximity lattices which present the same space to be isomorphic in the
category of proximity lattices. Consequently, it should come as no surprise
that the notion of morphism for proximity lattices needs to be quite lax.

Definition 2.3.10. Let (L, <) and (M, <) be proximity lattices. A rela-
tion R C L x M is called a j-morphism from (L, <) to (M, <) if R satisfies
(a)—(c) from Definition 2.2.5, and

(d") if (VV A)RD, then there exists B C AR(_) finite such that b <»; \/ B/,

(e) foranya € L, b € M, aRb if, and only if, there exists ¢ € L such that
a > cRb, if, and only if, there exists d € M such that aRd >y, b.

By a proximity morphism we will mean a relation satisfying (e) and Defini-
tion 2.2.5(a)—(c), but not necessarily (d’).

Note that Definition 2.3.10(e) says precisely that =7 c R = R = Ro >.
Condition (d’) in this definition is a consequence of (d) in Definition 2.2.5,
but it is weaker in general. If the proximity lattice (M, <)) is increasing,
then Definition 2.3.10 simplifies:

Proposition 2.3.11. Let (L, <) and (M, <)) be proximity lattices, and sup-
pose <p € <pm. Let R C L x M be a relation. The relation R is a j-morphism if,
and only if, R is a join-approximable relation from L to M that moreover satisfies
=L O0R =R =Ro .

Join-strong proximity lattices with j-morphisms form a category, JSPL, un-
der relational composition: for any join-strong proximity lattice (L, <), the
identity for the composition is the j-morphism > : (L, <) + (L, <) (cf. [88,
Section 7]). Of course, we also have a category MSPL of meet-strong prox-
imity lattices with m-morphisms. We now also get two categories of doubly
strong proximity lattices, namely the full subcategory DSPL; of JSPL and
the full subcategory DSPL,;, of MSPL. We will use the terms j-isomorphic
and m-isomorphic to indicate that proximity lattices are isomorphic in the
sense of category theory. Thatis, (L, <1 ) isj-isomorphic to (M, <) if there
exist j-morphisms ® : (L, <) — (M, <ym) and ¥ : (M, <pm) — (L, <L)
such that Po¥Y = >y and ¥ o ® = >~,s. Note that the existence of a j-
or m-isomorphism does not imply that the underlying lattices L and M are
isomorphic.
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It should already be clear that the category JSPL is close to being the Karoubi
envelope of the category of lattices with join-approximable relations. How-
ever, before we are able to conclude that these two categories are indeed
equivalent (Theorem 2.3.17), we need to study the filter and ideal structure
of proximity lattices.

Definition 2.3.12. A non-empty subset I C L of a proximity lattice (L, <)
is called a round ideal (sometimes <-ideal), if it is

o <-downward closed: forany b € I,ifa < b, thena € I.
o <-up-directed: for any a,b € I, thereisc € I such thata < cand b < c.

Dually, a round filter (or <-filter), is a subset F of L which is <-upward
closed and <-down-directed.

Example 2.3.13. Let X be a stably compact space, and (D, <) an open-basis
presentation of X. Then the round ideals of D, ordered by inclusion, form
a frame that is isomorphic to the frame of open sets of X. The isomorphism
sends a round ideal I of basic open sets to the open set U := |Jz¢;d of
X. Dually, if (E, <) is a compact-saturated-basis presentation of X then the
frame of round filters, ordered by reverse inclusion, is isomorphic to the
frame of compact saturated sets of X, ordered by reverse inclusion (which,
in turn, is isomorphic to the frame of open sets of the co-compact dual X°).
The isomorphism sends a round filter F to the compact saturated subset
K := Neerpe of X. It follows, because X is sober, and (D, <) is join-strong,
that the space of points of the frame of round ideals is isomorphic to X.
The points of this frame correspond precisely to the ‘prime round filters’ of
(D, <). We come back to this point in Example 2.5.5 in Section 2.5.

The following alternative characterisation of round ideals and round filters
is useful in practice. This characterisation was originally given as the defi-
nition in [88].

Lemma 2.3.14. Let (L, <) be a proximity lattice. A subset I C L is a round ideal
ifand only if |1 = I and I contains finite joins of its elements. A subset F C L is
a round filter if and only if 1F = F and F contains finite meets of its elements. In
particular, round ideals and round filters are always lattice ideals and lattice filters,
respectively.

Proof. The arguments are simple manipulations using the axioms for a prox-
imity lattices and are very similar to those given in section 3 of [88]. O

Since round ideals are closed under arbitrary intersections, the collection
<idI(L) of round ideals of a proximity lattice (L, <) forms a complete lat-
tice. The same holds for the collection <filt(L) of round filters, ordered by
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reverse inclusion. If L is distributive, then <idl(L) and <filt(L) are frames,
as proved in [88, Theorem 11]. From the proof of that theorem, we also get
the following description of round ideals and filters generated by a set of
the form |S.

Proposition 2.3.15. Let (L, <) be a proximity lattice and S C L a subset. The
round ideal generated by |Sis {a € L | a < \/ B for some finite B C S}, and the
round filter generated by 1S is {b € L | \ A < b for some finite A C S}.

Note that this proposition does not provide an expression for the round
ideal or filter generated by an arbitrary subset S, or even by a single element
a, in a proximity lattice. We remark here that the round ideal generated by
a single element a € L can be described as {b € L | Ta C 1b}, but we will
not need this fact in what follows.

We now characterize proximity morphisms in terms of round ideals.

Lemma 2.3.16. Let (L, <r) and (M, <) be proximity lattices, and R a relation
from L to M. The following are equivalent:

1. The relation R is a proximity morphism,

2. Foralla € L, aR(-) is a round ideal, and for all b € M, (-)Rb is a round
filter.

Furthermore, it follows from these conditions that the map <id1(R) : I — IR(_)
sends round ideals to round ideals, and that the map <filt(R) : F — (_)RF sends
round filters to round filters.

Proof. Immediate from the definitions and Lemma 2.3.14. O

Note that a proximity lattice is join-strong if, and only if, the function
¢+ L — <idl(L) preserves finite joins ([88, Proposition 17]). Similarly,
one can show using Proposition 2.3.15 that, if R : (L, <p) + (M, <) is a
proximity morphism, then R is a j-morphism if, and only if, the associated
map L — <idl(M), which sends a € L to aR(_), preserves finite joins.

We are now ready to characterize the category of join-strong proximity lat-
tices compared to the category of lattices with join-approximable relations.

Theorem 2.3.17. The category of join-strong (distributive) proximity lattices
with j-morphisms is equivalent to the Karoubi envelope of the category of (dis-
tributive) lattices with join-approximable relations.

Proof. We will give the proof for the category of all lattices; the proof for the
category of distributive lattices is the same. Let i be the functor from lattices
to join-strong proximity lattices which sends a lattice L to i(L) := (L, <)
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and a join-approximable relation R to the j-morphism R : (L, <) + (L, <).
We show that i satisfies the two conditions in Lemma 2.2.3. To see that (1)
holds, let P : L -+ L be an idempotent join-approximable relation. Now
(L, <p), where <p is the relation P71, is a join-strong proximity lattice by
Proposition 2.3.2.1, and id(L,<p) = P. Therefore, i(P) = P: (L, <) +» (L, <)
splits as the composition of the j-morphisms P : (L, <) + (L, <p) and
P: (L,<p) + (L, <). To see that (2) holds, we show that any join-strong
proximity lattice (L, <) is a retract of the lattice (<idl(L), <), by defining j-
morphisms R and S such that S o R is the identity on (L, <). The j-morphism
R : (<idl(L), <) -+ (L, <) is defined by IRa if, and only if, a € I. The j-
morphism S : (L, <) -+ (<idl(L), <) is defined by aSI if, and only if, there
exists b < asuchthat] C {b. Itis easy to verify that SoR =>-=id(; ). O

Composing the equivalence of this theorem with the dual equivalence in
Corollary 2.2.7, we now have a categorical proof of the following duality
theorem for stably compact spaces.

Corollary 2.3.18. The category of join-strong distributive proximity lattices with
j-morphisms is dually equivalent to the category of stably compact spaces with
continuous functions.

In Section 2.5, we will discuss the concrete content of this theorem in some
more detail. Jung and Stinderhauf [88] stress that it is not necessary to as-
sume that the relation < of a proximity lattice (L, <) is increasing (i.e., con-
tained in the lattice order <). However, making this assumption does not
change the category, up to equivalence:

Proposition 2.3.19. Every join-strong proximity lattice (L, <) is j-isomorphic to
the increasing join-strong proximity lattice (<idl(L), <), where < is the way-
below relation in the complete lattice of round ideals of L.

Proof. One may calculate that the way-below relation on <idl(L) says, for
round ideals I and ], that I < [ iff there exists d € | such that I C |d. The
j-isomorphism is given by the j-morphisms ® : (L, <) — (<idl(L), <) and
Y (<idl(L), <) — (L, <) defined by a @ I iff ] < laand [¥aiffa € I. It
is not hard, but a bit tedious, to check that ® and ¥ are indeed j-morphisms.
To conclude, note that P oY = = and Yo ® = >>. O

Now, for increasing proximity lattices, we have the following fact.

Proposition 2.3.20. Let (L, <) be an increasing join-strong proximity lattice.
The relation < is reflexive if, and only if, < is equal to the lattice order <p of L.

Proof. The ‘if” direction is clear. For ‘only if’, note that we already have
< C < since (L, <) is assumed to be increasing. For the inclusion <j C <,
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suppose a4 < b. Thena A b = a, and since < is reflexive we have a < g, so
a < a A b. From the proximity axiom for A, we conclude that a < b. O

We will come back to the property of reflexivity and how it can make the
theory of proximity lattices collapse in Proposition 2.4.9, after we introduce
the canonical extension in the next section.

2.4. Canonical extensions of proximity lattices

In this section we show that canonical extensions can be generalized to
proximity lattices. We present the material in this section without the as-
sumption that the proximity lattices involved are distributive, analogously
to the work on canonical extension for lattices in [54]. Later, in Theorem 2.5.7,
we will show that in the case of a distributive join-strong proximity lattice,
the canonical extension is exactly the lattice of saturated sets of its dual
space.

For a proximity lattice version of canonical extension, we parametrize the
definition of canonical extension (Definition 1.2.2) in the proximity relation
=, as follows.

Definition 2.4.1. Let (L, <) be a proximity lattice and  : L — C a lattice
homomorphism with C a complete lattice. We call u € C a round-ideal el-
ement if there is a round ideal I of L such that u = \/h[I]. Dually, u is a
round-filter element if there is a round filter F of L such that u = A h(F). We
denote the set of round-ideal elements of the extension by I”,(C), and the
set of round-filter elements by F” (C) (usually, when the map F is fixed, we
just write I, (C) and F-(C)). We say a function h : L — C is a rr-canonical
extension of the proximity lattice (L, <) if, forall u,v € C, S,T C L, and
a€L:

1. (round-dense) if u % v, then there exist a round-filter element x and a
round-ideal element y such that x < u,v < y,and x £ y in C.

2. (round-compact) if A #($S) <\ h({T)in C, then there exist finite sets
S CSand T/ C Tsuchthat AS' <V T'.

3. (round-join-preserving) For alla € L, h(a) = \/{h(b) | b < a}.

Dually, k : L — C is a o-canonical extension of the proximity lattice (L, <) if
it is round-dense, round-compact, and round-meet-preserving:

3’. (round-meet-preserving) Foralla € L, k(a) = A{k(b) | b > a}.
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Note that if an extension / is round-join-preserving or round-meet-preserving,
it follows in both cases that h is <-preserving, i.e., foralla,b € L,ifa < b,
then h(a) < h(b). Note that the maps h and k are not necessarily injective:

it is not hard to check that the map / : 3 — 2 from Example 2.3.9 is both a
7t- and o-canonical extension.

Before showing existence and uniqueness of the canonical extensions in the
presence of strongness axioms, we now give some useful alternative char-
acterisations of round-denseness and round-compactness. The reader may
recognize these as the proximity-lattice versions of usual lattice-theoretical
facts, and the proofs are straight-forward generalisations of these proofs.

Proposition 2.4.2. Let (L, <) be a proximity lattice. The following are equivalent
for any <-preserving extension h : L — C.

1. The extension h is round-compact,

2. For every round filter F and round ideal I of L such that A\ h(F) < \/ h(I)
in C, we have FN I # @.

Proof. For the direction (1) = (2), the definition of round-compactness gives
finite subsets S’ of F and T’ of I such that AS’ < \VT'. We then have
\VV T' € I because I is an ideal. Also, A S’ € F since F is a filter, and then,
since F is round, we also have \/ T’ € F. Hence \V T’ € FNI. For the
direction (2) = (1), let S and T be subsets of L such that A h(1S) < \V h({T).
Let F be the round filter generated by 1S and I the round ideal generated
by LT. Then A1(F) < Ah(1S) < VA(LT) <\ h(I). By (2), picka € FN L.
By Proposition 2.3.15, there exist finite subsets S’ C S and T’ C T such that
NS <a=<\T.Hence, ANS' <\ T, as required. O

Proposition 2.4.3. The following are equivalent for any extension h : L — C.
1. The extension h is round-dense,

2. Foranyu € C,u = \/{x|u>x¢& F!(C)} and
u=Mylu<yelt(C)}.

Proof. This is a simple rewriting of the definition of round-dense. O

We will now present the 7r-canonical extension of a join-strong proximity
lattice as a lattice of Galois-closed sets, and show that it is unique up to
isomorphism. For this, we first recall some elementary facts about polarities
and Galois connections that we will need. We refer the reader to [50] and
[55] for more details.

A polarity is a triple (X,Y,Z) where X and Y are setsand Z C X x Y. Any
polarity gives rise to a pair of functions (Iz,7z) between the posets P(X)
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and P(Y), where the function Iz : P(X) — P(Y) sends a subset u C X
to{y |Vx € u: xZy}and rz : P(Y) — P(X) sends a subset v C Y to
{x | Yy € v : xZy}. This pair of functions forms a Galois connection, i.e.,
an adjunction between P(X)°P and P(Y), since v C Iz(u) if, and only if,
u C rz(v). The composition cz := ry o I is therefore a closure operator on
P(X), and we denote by C := G(X, Y, Z) the complete lattice of closed sets,
ie., u C X such thatcz(u) = u. Wehavemaps f : X - Candg:Y — C
which are given by x — ¢z ({x}) and y — rz({y}), respectively.

Theorem 2.4.4. Let (X,Y,Z) be a polarity.
1. The complete lattice C := G(X,Y, Z) has the following properties.

(@) Foranyu € C,u = V{f(x) | x € X, f(x) <u},
(b) Foranyue C,u=N{g(y)|lyeY, u<gly)},
(c) Foranyx € X,y € Y, we have f(x) < g(y) iff xZy.
Moreover, it follows from (a)—(c) that
(d) Forx1,xp € X, f(x1) < f(x2) if, and only if, forally € Y,
xpZy implies x1 2y,
(e) Foryy,y2 €Y, g(y1) < g(y2) if, and only if, for all x € X,
xZyq implies xZy»,
(f) ForyeY,x € X, g(y) < f(x) if,and only if, forall x' € X,y € Y,
if x'Zy and xZy' then x'Zy'.

2. If C' is a complete lattice and f' : X — C', g’ : Y — C' are functions such
that properties (a)—(c) from (1) also hold for C', f' and §', then there is a
unique complete lattice isomorphism ¢ : C' — C such that ¢ o f' = f and
pog =g

3. Let Q = (XUY, <) be the pre-order defined by items (c)—(f) of (1). Then
the Dedekind-MacNeille completion C" of Q, together with the natural in-
clusion maps of f"' : X — C" and §"" : Y — C”, satisfies (a)—(c) of item (1),
and hence, in particular, it is uniquely isomorphic to C.

Proof. See, for example, [50, Section 2]. O

In order to construct the 7r-canonical extension of a join-strong proximity
lattice, we now associate the following polarity (X, Y, Z) to a proximity lat-
tice (L, <):

X = <filt(L), Y:= <idl(L), Z:={(F,])|FNI#Q@}. (1)

Let C := G(X,Y, Z) be the associated complete lattice, and leth : L — C
be the function given by h(a) := g(la). We will now show in a few steps
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that 1 : L — C is indeed a 7r-canonical extension of (L, <). Note first that
h(a) = {F: FNla # @} = {F : a € F}, and hence in particular that & is
<-preserving.

Lemma 2.4.5. If (L, <) is a join-strong proximity lattice, then h : L — C defined
from the polarity in (2.1) is a homomorphism.

Proof. Sincea Ab € Fiffa € Fand b € F, it is clear that h preserves bi-
nary meets. Also, h(T) = T because any round filter contains T, and
h(Llrp) = ¢z(@) = Lc. Since h preserves meets, it preserves order; it re-
mains to show that h(a Vv b) < h(a)V h(b). To this end, let F € h(a V b),
which means that a Vb € F. We need to show that F € h(a) V h(b) =
cz(h(a) Uh(b)). Let I € Iz(h(a) Uh(b)) be arbitrary. Since F is round, pick
x € Fsuch that x < aV b. By join-strongness, pick a’,b’ € L such that
a' <a,b <b,and x < a' V' Since x € F,we geta’ V' € F. On the other
hand, a € 14/, so, since I € Iz(h(a)), we get ta' NI # @. It follows that
a’ € I, and similarly that b’ € I. We conclude thata’ Vb’ € [,so FNI # @,
as we needed to show. O

The following lemma identifies the round-filter and round-ideal elements
of the extension /. This lemma could alternatively be obtained as a conse-
quence of a more general fact about the construction in Theorem 2.4.4, in
the case where the sets X and Y in the polarity themselves have additional
lattice structure, as is indeed the case in (2.1).

Lemma 2.4.6. Let h: L — C be the extension defined from the polarity (X,Y,Z)
in (2.1). The set of round-filter elements of h is exactly f(X), and the set of round-
ideal elements of h is exactly g(Y).

Proof. We show that, for any round filter F, we have f(F) = A h(F), which
clearly suffices to conclude the first part. Let F be a round filter. If a2 € F,
then FZla, so f(F) < g({a) = h(a). We conclude that f(F) < Ah(F).
For the other inequality, write u := A h[F]. Then, using Theorem 2.4.4.1(a),
u = V{f(F') | f(F') < u}. Let F/ be arbitrary with f(F’) < u. Then
f(F’) < h(a) foralla € F,so F C F'. Therefore, any round ideal I which
intersects F intersects F/, in other words, f(F') < f(F), by 2.4.4.1(c). The
proof of the second part is dual. O

Proposition 2.4.7. Let (L, <) be a join-strong proximity lattice. The function
h: L — C, defined with the polarity (X,Y,Z) above, is a mt-canonical extension

of L.
Proof. We showed that & is a homomorphism in Lemma 2.4.5. To see that

h is round-dense, recall from Theorem 2.4.4.1(a,)b) that the set f(X) join-
generates C and the set g(Y) meet-generates C. Round-denseness follows
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by Proposition 2.4.3 and Lemma 2.4.6. For round-compactness, 2.4.4.1(c)
yields that for any polarity (X,Y,Z),if x € Xandy € Y, then x < yin
G(X,Y,Z) if and only if xZy. In particular, in our case, if F is a round filter
and I is a round ideal, then AF < \/Iin G(X,Y,Z) implies that FN I # @,
which, by Proposition 2.4.2, is equivalent to round-compactness. Finally, to
prove that h is round-join-preserving, let 2 € L be arbitrary. We need to
show that h(a) = \/{h(b) | b < a}. We already noted before Lemma 2.4.5
that  is <-preserving; therefore, h(a) > \/{h(b) | b < a}. For the converse
inequality, if F € h(a), thatis, a € F, then since F is round, there is some
b € F such that b < a. We conclude that F € h(b), which is below the
join. O

We now also prove uniqueness of the m-extension & : L — C constructed
above.

Proposition 2.4.8. If (L, <) is a join-strong proximity lattice and h' : L — C’
is a rt-canonical extension of L, then there exists a complete lattice isomorphism
¢ : C" — Csuchthat poh’ = h.

Proof. The homomorphism /' induces a function f' : X — C’, defined by
f/(F) := Ngert'(a) and ¢’ : Y — C’ defined by ¢'(I) := Ve (a). Tt
follows from round-denseness that f'[X] join-generates C’ and ¢'[Y] meet-
generates C'. It follows from round-compactness of i’ that f'(F) < ¢/(I)
implies FN I # @, and the other implication holds by the definition of
f" and g’. Therefore, by Theorem 2.4.4.2, there is a unique isomorphism
¢ : C' = Csuchthat po f/ = fand gog = g. Since I’ is round-join-
preserving, we have 1/ (a) = \V/{I'(b) | b < a} = ¢'(1a), so we deduce from
pog =gthatpoh' =h. O

The same existence and uniqueness results hold for meet-strong proxim-
ity lattices and their c-extensions. In order to prove that a meet-strong
proximity lattice (L, <) has a c-extension, consider the join-strong prox-
imity lattice (L°P,>). Let h : L°P — C be a m-extension of (L°P, >). Then
k : L — C°P, defined by k(a) := h(a), is a o-extension of (L, <). More
explicitly, given a meet-strong proximity lattice (L, <), one may consider
the polarity (<idl(L), <filt(L), Z~1), where the relation Z is defined as be-
fore. Define the function k : M — G(=<idl(L), <filt(L), Z)°P by a — g(%1a).
Then, to be able to show that k is a homomorphism, one needs to assume
that (L, <) is meet-strong: the situation is order-dual to that in the proof
of Lemma 2.4.5. The rest of the proof that k is a o-extension is analogous
to the proof of Proposition 2.4.7. The canonical extensions of a proximity
lattice (L, <), if they exist, will be denoted by & : (L, <) — (L, <)™ and
k: (L <)—(L,<).



46 Chapter 2. Duality and canonical extensions for stably compact spaces

If a proximity lattice (L, <) is doubly strong, then both canonical exten-
sions exist. Note that the complete lattices G(X,Y,Z) and G(Y, X, Z~1)°P
which were used to define the 7- and o-extension, respectively, are isomor-
phic. However, the maps giving the extension, i.e.,, 1 : L — G(X,Y,Z) and
k:L—G((Y, X2 _1)°p, are not always the same. We have an easy charac-
terization of when they do coincide.

Proposition 2.4.9. If (L, <) is a doubly strong proximity lattice, then the follow-
ing are equivalent:

1. The g-extension k : (L, <) — (L, <)" is also a rt-extension of (L, <),
2. There exists an isomorphism ¢ : (L, <)™ — (L, <)7 such that p o h =k,
3. The relation < is reflexive.

Proof. That (1) implies (2) follows directly from the uniqueness of the 7t-
extension (Proposition 2.4.8). For (2) implies (3), note that because (L, <)” is
now also a 7r-extension, we get, in the concrete representation of (L, <) as
G(X,Y,Z), forany a € L, that h(a) = g(La) = N{g({b) : a < b}. Observe
that the round filter fa is an element of the right-hand-side. Hence, fa is
in g({a), which implies by round-compactness that a € la. For (3) implies
(1), note that the requirements of round-join-preserving and round-meet-
preserving both become equivalent to <-preservation in the case where <
is reflexive. O

Recall from Proposition 2.3.20 that for increasing proximity lattices, the rela-
tion < is reflexive if, and only if, it is equal to the lattice order. In particular,
if L is a lattice, then the 71- and o-extensions of (L, <), viewed as a dou-
bly strong proximity lattice, coincide with the usual canonical extension of
the lattice L. We will come back to the relation between the two canonical
extensions of a doubly strong proximity lattice in Proposition 2.5.8, after
discussing the dualities for proximity lattices. In the distributive case, we
will see that R is reflexive if and only if (L, <) is j-isomorphic to a proximity
lattice of the form (M, <,;), where <) is the lattice order on M.

We fix the following notation for the rest of this section: R : (L, <) -+ (M, <)
is a proximity morphism between join-strong proximity lattices and

hy : (L,<) — (L,<)™and hy : (M, <) — (M, <)™ are the 7r-canonical
extensions of (L, <) and (M, <). Additional assumptions on R, where
needed, will be mentioned in the statements of the results. We now de-
fine the rr-extension of R, a map from (L, <)™ to (M, <) which extends R,
in a sense to be made precise below. Recall from Lemma 2.3.16 that, for any
round ideal I, the set IR(_) is a round ideal. Now, a round-ideal element
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y € I<((L,<)™) represents the round ideal I := h;'(]y). So R™ should
map y to the ideal element in (M, <) that represents the round ideal IR(_).
Since the round-ideal elements meet-generate the lattice (L, <)™, we now
simply extend the assignment by taking meets. The formal definition is as
follows.

Definition 2.4.10. Let R™ : IL((L,<)™) — I<((M,<)™) be the function
defined, for y a round-ideal element of (L, <)”, by

R™(y) := \/{hm(b) | b € Mst. 3a € L:aRband hy(a) < y}.

Now let R™ : (L, <)™ — (M, <) be the function defined by

R™(u) = A{R™(y) s u < y € L((L,<)™)}.

Dually, we could define the g-extension of an m-morphism between meet-
strong proximity lattices.

It is immediate from the definition that R™ is order-preserving. We now
show in which sense the function R™ extends the proximity morphism R.

Lemma 2.4.11. Foranya € L, we have

R™(h(a)) = \/{hm(b) | aRb}.

Proof. Note that hiy (a) is a round-ideal element. Therefore, by definition, we
have R™(hy(a)) = \/{hpm(b) |b € Ms.t. 3a’ € L:a’Rband hy(a’) < hy(a)}.
Hence, it is clear that if aRb then ipg(b) < R (hr(a)). Therefore, we have

R™(hp(a)) > \/{hm(b) | aRb}. For the converse inequality, let b € M and
a’ € L such that a’Rb and hy(a’) < hp(a). We have A hp((1)Rb) < hp(a),
which is in turn below hy (a) = \/ hy({a). By Proposition 2.4.2, since (_)Rb
is a round filter and |4 is a round ideal, there exists a’’ < a with a” Rb. Since
R is a proximity morphism, we conclude that aRb. O

We now discuss the meet-preservation of R™.

Lemma 2.4.12. The function R™ preserves all meets of collections of round-ideal
elements.

Proof. Let U be a collection of round-ideal elements of (L, <)™. Writing
ug := A\ U, we need to show that R™(uy) = A{R™(u) | u € U}. Since R™ is
order-preserving, it suffices to show that R™ (1) > A{R™(u) | u € U}. For
this, we use round-denseness. Let F be an arbitrary round filter such that
xo := ANhpm(F) < A{R™(u) | u € U}. We show that xy < R™(up). For any
u € U, we have that xg < R™(u). By round-compactness (Proposition 2.4.2)
and the definition of R™ for round-ideal elements, pick b, € Fand a), € L
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such that i (a},) < y and a],Rb,. Since > o R = R, we can pick a,, € L such
thata, < aj, and a,Rb,. Performing these steps for every u € U, we get sub-
sets {a, : u € U} of Land {b, : u € U} of F. Let G be the round filter gen-
erated by 1{a, : u € U}, and let v := A h1(G). Now, since for every u € U
we have a), € G, we getv < hy(a},) < u, sothatv < AU = up, and hence
R™(v) < R™(ug). We finish the argument by showing that xo < R™(v). By
definition of R, we may show that for an arbitrary round ideal I of L such
that yo := \V hp(I) > v, we have xg < R™(yp). By round-compactness, if
v < VVhp(I), then there is ap € GNI. Since a € G, by Proposition 2.3.15,
there are uy,...,u, € U such that A" a,;, < ap. Since ay;Rby, for every i,
we have that Aj_; a,,R A, by;. We now put by := A by, which is in F
since all the b, are, and we get that agRbg since - o R = R. Since ag € I, we
have hp(ag) < yo, and so, since agRby, we have hp(by) < R™(yp), by the
definition of R™(yp). Since xo = A hp(F), and by € F, we get xo < hp(by),
so we conclude xog < R™(yo). O

Using this lemma, it is now fairly easy to show the following.
Proposition 2.4.13. The function R™ preserves all meets.

Proof. Let U be an arbitrary collection of elements from (L, <)”. We define
U’ to be the set of round-ideal elements below U, i.e., U := I<((L, <)™) N{U.
Note that A U’ < A U, by round-denseness. We further have that A R™(U)
is a lower bound for the set R"(U’), so AR™(U) < AR™(U’). Finally,
since U’ is a set of round-ideal elements, we have by Lemma 2.4.12 that
AR™(U’) < R™ (A U'). Putting these inequalities together, we get

AR™(U) < AR (W) <R™ (AU') <R (AU). 0

Regarding joins, the situation is more delicate. However, we can show the
following, by similar methods to the ones above.

Lemma 2.4.14. The function R™ preserves joins of up-directed collections of
round-ideal elements.

Proof. Let U be an up-directed collection in I-((L, <)™). We need to show
that R™(\/ U) < V R™(U), as the other direction follows directly from the
fact that R™ is order-preserving. Note that \/ U = \/ hy (I), where we write
I for the round ideal {(Uyerhy ' ({u)) of L, so VU is a round-ideal ele-
ment. Therefore, by definition of R™ we have that R™(\/ U) is equal to

V{hpm(b)|3Fa e L:h(a) <V UandaRb}. Leta € Land b € M such that
hr(a) < VU and aRb. We need to show hy(b) < \/ R™(U). Pick a’ such
that a’Rb and @’ < a. Then

/\hL(Ta’) < hL(a) < \/U = \/hL(I)
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By round-compactness, pick ti,...,t, € I such thata’ < \/}_;t. Since
the extension hj, is <-preserving, for each i, there exists u; € U such that
hr(t;)) < u;. Since U is up-directed, pick uy € U such that uy > VI u;.
We then have Iy (Vi t;) < Viqu; < ug. Now a’ < VI, t; and a’Rb, so
(Viq ti)Rb. We conclude, by definition of R™ (1), that hps(b) < R™(up),
which is below \/ R™(U), as required. O

If R is a j-morphism, then we can also show the following.

Lemma 2.4.15. If R : (L, <) — (M, <) is a j-morphism, then R™ preserves
finite joins of round-ideal elements.

Proof. Suppose U = {uy,...,uy,} is a finite subset of I ((L, <)™). We need
to show that R™(\/ U) < \/ R™(U). For each 1 < k < n, let Iy be a round
ideal such that uy = \/ hy(Uy). By the same argument as in the proof of
Lemma 2.4.14, \ U is a round-ideal element. Take an arbitrary a € L and
b € M such that ki (a) < VU and aRb. We show that hp(b) < \V R™(U).
By denseness, it suffices to show that for an arbitrary round-filter element
x < hp(b), we have x < \/ R™(U). Since x is a round-filter element, there
is a round filter F such that x = A hy[F], and then by round-compactness
and round-join-preservingness there is some ¢ € F N {b. Now G := (_)RF
is a round filter by Lemma 2.3.16. Moreover, a € G since aRb > c, so aRc.

Thus, we get
A (G) < hi(a) < \/U = \/he (1),

where [ is the round ideal generated by J;_; Ix. By round-compactness,
pick d € G N I. By definition of G, pick e € F such that dRe, and by defini-
tion of I, pick a finite subset B C [J}_; I such that d < \/ B. We then also
get \/ BRe, so, since R is a j-morphism, there is a finite subset A of BR(.)
such that e <) VA. Now VA € Fsince e € F, so that x < hp(V A).
Moreover, hp(V A) = Vhy(A) < VR™(U), because for each a € A there
is some b € B C |J}_; I such that bRa. We conclude that x < \/ R™(U), as
required. O

At this point, we have seen that R™ always preserves arbitrary meets and
up-directed joins of round-ideal elements, and also finite joins of round-
ideal elements in case R is a j-morphism. The following proposition follows
immediately.

Proposition 2.4.16. If R is a j-morphism, then R™ preserves arbitrary joins of
round-ideal elements.

It is natural to ask if we can prove by similar methods that R preserves
all joins, as is possible for canonical extensions of lattices using a ‘restricted
distributivity’ law (cf. [54], Lemma 3.2). Although we are able to prove an
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analogue of that law for proximity lattices, we do not see at this point how
to use it to generalize the proof from [54] that R”™ preserves all joins. Instead,
we will prove the result that R preserves all joins using the connection
between duality and canonical extensions for proximity lattices, that we
develop in the next section.

2.5. Duality for stably compact spaces

The dual equivalence between stably compact spaces and certain proxim-
ity lattices was established in [88], and reproved by categorical methods in
Corollary 2.3.18 above. We first recall how the dual space is defined in [88],
and then show in Proposition 2.5.6 that these two dual equivalences indeed
associate the same dual space to any join-strong distributive proximity lat-
tice. After this, we show in Theorem 2.5.7 that canonical extensions of dis-
tributive join-strong proximity lattices can be constructed using the dual
space.

The points of the dual space of a distributive proximity lattice are the round
filters of the lattice which are prime, in the following sense.

Definition 2.5.1. Let (L, <) be a proximity lattice. A round filter F C L is
called prime if, for any finite set A C L, \/ A € F implies ANF # @.

The following theorem is the relevant consequence of the axiom of choice
in our setting.

Theorem 2.5.2 (Prime round filter theorem). Let (D, <) be a join-strong dis-
tributive proximity lattice. Let G be a round filter and | a round ideal such that
GNJ = @. Then there exists a prime round filter Fy such that Fy N ] = @ and
GCH.

Proof. LetC := {F : F around filter, FN] = @, G C F}. Note that the union
of a chain of round filters is a round filter. So, by Zorn’s Lemma, we can take
a maximal Fy € C. It remains to show that Fy is prime. Suppose, to obtain
a contradiction, that there exist d,e € D such thatd Ve € F, butd ¢ F
and e ¢ Fy. Consider the set F; := {x | dV x € Fy}. Note that F, is a filter,
by distributivity of D. Also note that F; is round, using join-strongness and
idempotence of <. Moreover, F; contains e, so F; is a round filter strictly
containing Fy. Therefore, by maximality of Fy, pick an elementa € F; N J.
Now F, := {x |aV x € Fy} is again a round filter which strictly contains
Fo, this time because d € F,. Therefore, pick an element b € F, N J. Now
aVbe Fysinceb € F,,and aV b € | since | is an ideal. On the other hand,
Fy N ] = @, so this is the desired contradiction. O
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Definition 2.5.3. Let (D, <) be a join-strong distributive proximity lattice.
The round spectrum of (D, <) is the space spec (D, <), whose points are
prime round filters of (D, <) and whose topology is generated by the sets
of the form Uy := {F : d € F},ford € D.

The round spectrum can also be obtained via the duality between sober
spaces and spatial frames (cf. Theorem 1.2.7).

Lemma 2.5.4 ([88], Corollary 12). The round spectrum of a join-strong distribu-
tive proximity lattice is homeomorphic to the space of points of the arithmetic frame
of round ideals.

Example 2.5.5. If X is a stably compact space, and (D, <) is an open-basis
presentation of X, then a simple topological argument will show that prime
round filters of D correspond to completely prime filters of open sets of X.
It follows in particular that the round spectrum of any open-basis presenta-
tion of X is homeomorphic to X.

Proposition 2.5.6. The dual space of a join-strong distributive proximity lattice
(D, <), according to the duality in Corollary 2.3.18, is homeomorphic to the round
spectrum of (D, <).

Proof. The duality functor of Corollary 2.3.18 uses the fact that any join-
strong distributive proximity lattice (D, <) is a j-morphic retract of the lat-
tice (<idl(D), <). The retraction j-morphisms R, S from the proof of Theo-
rem 2.3.17 compose to the identity on the object (D, <). One may now cal-
culate from the definitions that the composition R o S is the join-approximable
relation > : (<idl(D), <) + (<idl(D), <), i.e., the way-above relation of
the frame (<idl(D), <) (also see Proposition 2.3.19). Now, by the duality
of distributive lattices with join-approximable relation and spectral spaces
with continuous functions (Theorem 2.2.6), the relation >> yields a continu-
ous function f on the dual space of the lattice (<idl(D), <). The dual space
associated to (D, <) in Corollary 2.3.18 is the image of this map f. A short
argument now shows that a prime filter G of the lattice (<idl(D), <) is in
the image of f if, and only if, there exists a round prime filter F of (D, <)
such that G = {I € <idl(D) | FNI # @}. Using this fact, one easily
shows that the round spectrum of <idl(D) is homeomorphic to the image
of f. O

The canonical extension of a join-strong distributive proximity lattice can be
constructed from the round spectrum. Specifically, we have the following
result.

Theorem 2.5.7. Let (D, <) be a join-strong distributive proximity lattice. Let
S be the complete lattice of saturated sets of the round spectrum of (D, <). Then
h:D — S, defined by d — {F : d € F}, is a t-canonical extension of (D, <).
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Proof. It is not hard to see that / is a homomorphism. One may further
show that the round-ideal elements of the extension & : D — S are exactly
the open sets of the round spectrum, and that the round-filter elements are
exactly the compact saturated sets of round spectrum. From this, round-
denseness follows. For round-compactness, one uses the prime round filter
theorem?. The fact that  is round-join-preserving is immediate from the
definition of round filters. O

The dual statement of Theorem 2.5.7 also holds, replacing join-strong by
meet-strong and the prime round filter spectrum by the prime round ideal
spectrum.

We now remark on how the special case of distributive lattices and spectral
spaces fits in the general picture. We already observed in Proposition 2.4.9
that the 77- and o-extension of a doubly strong proximity lattice (L, <) co-
incide if, and only if, the relation < is reflexive. If the underlying lattice
is distributive, this situation relates to the dual space being spectral, as fol-
lows.

Proposition 2.5.8. Let (D, <p) be a distributive join-strong proximity lattice.
The following are equivalent.

1. (D,=<p) is j-isomorphic to some distributive proximity lattice of the form
(E, <k),

2. (D, <p) is j-isomorphic to some distributive proximity lattice (E, <) with
< reflexive,

3. The round spectrum of (D, <p) is a spectral space.

Proof. 1t is trivial that (1) implies (2). For (2) implies (3), it suffices to show
that if <p is reflexive, then the round spectrum of (D, <p) is spectral. A
straight-forward application of the prime round filter theorem shows that
each basic open set U, is compact in this situation, so that {U;}cp is a
basis of compact open sets for the round spectrum. For (3) implies (1), let
E be the distributive lattice of compact open sets of the round spectrum of
(D, <p). By Stone duality for distributive lattices, the round spectrum of
(D, <p) is homeomorphic to the round spectrum of (E, <g). Hence, the
proximity lattices (D, <p) and (E, <) must be j-isomorphic by duality for
join-strong distributive proximity lattices. O

Looking back at Proposition 2.4.9, we now see that in the distributive case,
we can conclude something more from the assumption that the relation <
is reflexive.

4As a referee pointed out, one could alternatively prove round-compactness by invoking
the fact that stably compact spaces are well-filtered, following the terminology of [67], p. 147.
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Corollary 2.5.9. If (D, <) is a doubly strong distributive proximity lattice and
< is reflexive, then there is a distributive lattice E such that (D, <) is both j- and
m-isomorphic to (E, <g).

Regarding the extensions of morphisms, recall that at the end of Section 2.4,
the question whether the 7r-extension of a j-morphism preserves all joins
remained open. We can now show that, for distributive lattices, the 7-
extension of a j-morphism R is concretely realized as the inverse image map
of the continuous map to which R corresponds via the duality. It will follow
in particular that R™ preserves all joins and meets.

More precisely, our set-up is as follows: let R : (D, <) — (E, <) be a j-
morphism between join-strong distributive proximity lattices, and let fr be
the dual map from the round spectrum of (E, <) to the round spectrum
of (D, <). For F a prime round filter of (E, <), we have fr(F) = (-)RF.
Let hp : (D, <) — (D,<)™and hg : (E, <) — (E, <)™ be the m-canonical
extensions, which, up to isomorphism, are the complete lattices of saturated
sets of the spectra, as given in Theorem 2.5.7.

Proposition 2.5.10. In the above setting, we have for all u € (D, =)™ that
R™(u) = fx ' (u). In particular, R™ preserves all joins and meets.

Proof. For an open set u of the space spec (D, <), we have u = \/ hp(I),
where I is the round ideal hBl (Ju). Hence,

flgl(u) = {F e spec(E,<): (L)RFNI # @}
= U hE(E)
ecIR(-)
= \/{he(b) | 3a € D : hp(a) < u,aRb},

so fx ' (1) agrees with the definition of R (u).
Now, for any saturated set s of the dual space of (D, <), we have

fr'(s) = {F € spec(E, <) | f(F) € s}
= {F € spec(E, <) | Yu open, if s C u then f(F) € s}

= /\{fT_l(u) s <u,ucl((D,<)7)},

where the last step follows from the proof of Theorem 2.5.7. So the defini-
tion of R completely agrees with the values of f’ L O

We make some final remarks about our last result. On the one hand, it
shows that duality can be a powerful tool to answer questions which are
algebraically difficult (cf. the proofs in Section 2.4). On the other hand,
using the duality we can so far only prove results in the distributive setting,
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whereas the results in Section 2.4 hold in arbitrary proximity lattices, for
which no duality is available yet. Moreover, the duality makes essential
use of the axiom of choice, which was avoided completely in Section 2.4.

Concluding remarks

In this chapter, we have shown that the theory of canonical extensions,
which in the past has generated powerful results for logics based on lat-
tices, can be extended to proximity lattices. The canonical extension gives
an algebraic description of the complete lattice of saturated sets of a stably
compact space, starting from any basis presentation of the space. We now
relate our work to the literature, and point to directions for future work.
Our definition of proximity lattice is close to, but a bit more general than
that of Jung and Siinderhauf [88]. Note in particular that in [88], all prox-
imity lattices were distributive, but this assumption is not necessary for
a large part of the theory of canonical extensions, developed here in Sec-
tion 2.4. Also, in the original definition of Jung and Siinderhauf, it was em-
phasized that proximity lattices are not necessarily increasing. However, as
we showed in Proposition 2.3.19, the category of join-strong proximity lat-
tices is equivalent to its full subcategory that only consists of the increasing
ones. The assumption that the proximity relation is increasing makes the
ensuing theory quite a bit cleaner and easier to present. Moreover, com-
pared to [88], our morphisms are going in the opposite direction. We have
made this choice because we wanted the category of algebras to be dually
equivalent to the category of spaces; this way, the dual equivalence between
the categories of join-strong distributive proximity lattices and stably com-
pact spaces directly generalizes Stone duality between distributive lattices
and spectral spaces. Of course, the choice of direction of morphisms is ulti-
mately a matter of taste, especially because the morphisms in the category
are relations.

The relation between join-strong and meet-strong proximity lattices was
clarified in Example 2.3.8: a meet-strong representation of a stably compact
space X corresponds to a join-strong representation of the co-compact dual
X9. We thus observe that the doubly strong proximity lattices from Jung
and Stinderhauf [88] simultaneously represent both the space X and its co-
compact dual X°. This is the reason that a rather complicated construction,
involving pairs of open and compact sets, was needed in [88] in order to
obtain the representing lattice from a space (cf. Example 2.3.5 above). By
contrast, we used open-basis presentations to represent a space X by a prox-
imity lattice, which are not doubly strong, but only join-strong. We thus
separate the issue of representing X from representing its co-compact dual
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X?. In this respect, our work is closer in spirit to the work of Smyth [135],
where proximity lattices where originally introduced.

Gehrke and Vosmaer [66] express the canonical extension of a lattice as a
dcpo presentation (also see [87]). The same can be done for our 77- and o-
canonical extensions of proximity lattices, via a straightforward generalisa-
tion of the methods used in [66]. In that work, the big advantage in pre-
senting the canonical extension via dcpo presentation was that it shed new
light on the preservation of inequalities: known results about dcpo presen-
tations and dcpo algebras were applied to obtain powerful results about
the preservation of inequalities in the canonical extension. We expect that
similar methods would apply in our setting, if one were to study the canon-
icity of inequations in proximity lattices. We leave this as a topic for further
research.

Another obvious direction for future work is to apply the canonical exten-
sion of proximity lattices to logic and, more specifically, to the theory of
probabilistic programming. One of the original motivations for the work of
Jung and Stinderhauf [88] was to develop a ‘continuous’ version of Domain
Theory in Logical Form (cf. [86]). Just as the ‘classical’ canonical exten-
sion proved to be a powerful tool in modal logic, we expect that canonical
extensions of proximity lattices could prove to be useful in the study of
the Multi-lingual Sequent Calculus developed in a sequence of papers by
Kegelman, Moshier, Jung and Siinderhauf (e.g., [90], [119], [86]).

The definition of the canonical extension for proximity lattices opens up a
variety of new questions regarding the behaviour of canonical extensions
of maps between proximity lattices, in the line of [56], [57] and [54]. We
believe that we have only scratched the surface of what can be said about
these questions, by showing some properties of the canonical extension of
proximity morphisms in Section 2.4.

We saw in Section 2.4 that join-strong proximity lattices have 7-extensions,
meet-strong proximity lattices have o-extensions, and thus a doubly strong
proximity lattice has both extensions. Moreover, these two extensions coin-
cide if, and only if, the additional relation is reflexive. This sheds new light
on a part of the classical theory of canonical extensions that was perhaps
not so well understood in the past, namely that even though a lattice has
one canonical extension, there are two ways to extend a lattice map, i.e., a
o- and a 7r-version. In light of our work in this chapter, we would explain
this phenomenon by saying that a lattice in principle does have both a o-
and a 7r-extension, but that these two extensions coincide because of the
reflexivity of the lattice order.

An important related issue in the theory of proximity lattices and their
canonical extensions that we think needs to be explored further is that of
order-duality. More precisely, the power of canonical extensions lies in their
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ability to deal with additional operations on the lattice which may be order-
preserving or order-reversing. It is thus important to understand the role of
order-duality in more detail, although that was not the focus of this chap-
ter. For the same reason, it also seems natural to wonder whether there is a
natural, more symmetrical notion of extension for those proximity lattices
which do not satisfy any of the ‘strong” axioms.

In Section 2.5, we have put the Jung and Siinderhauf duality from [88] in
a categorical perspective. A question which remains open is whether it is
possible, as it was in the classical case [139], to remove the requirement of
distributivity on the underlying lattice. This would involve replacing the
spectrum of prime round filters by the space of maximal pairs of round
filters and round ideals, in a sense which we believe could be made precise
in future work.

A last issue that we would like to deal with in future work is how essential
the use of duality is to prove Propositions 2.5.8 and 2.5.10. Concretely, we
would expect that versions of Propositions 2.5.8 and 2.5.10 hold in which
we no longer need to refer to the dual space, and we therefore also avoid
the axiom of choice and the assumption that the underlying lattices are dis-
tributive.



Chapter 3. Duality for sheaves of distributive-
lattice-ordered algebras

In this chapter, we study sheaf representations of distributive lattices using Priest-
ley duality. We introduce a notion for sheaves over stably compact spaces of being
flasque on a given basis. We prove that sheaves of distributive lattices over a stably
compact space that are flasque on a basis dually correspond to decompositions of
the Priestley dual space of the lattice of global sections, which are fibred over the co-
compact dual of the base space. Moreover, this result extends in a straightforward
way to distributive-lattice-ordered algebras, for which it then also provides a tool
for studying sheaf representations.

Since a distributive lattice A is completely determined by its Priestley dual
space X, it is reasonable to expect that a sheaf representation of A also corre-
sponds to a certain kind of representation of the space X. Indeed, sheaf rep-
resentations of distributive lattices over a Boolean space can be understood
dually as disjoint decompositions of the Priestley and Stone dual spaces of
the distributive lattice in question [76, 49], also cf. Remark 3.2.3 below.

In practice (cf., e.g., Chapter 4), one is often interested in sheaves over base
spaces which are not Boolean, but for example only compact Hausdorff,
or spectral. We therefore place ourselves in the wider context of sheaves
over stably compact spaces (cf. Chapter 2). We will show that certain sheaf
representations of a distributive lattice A over a stably compact base space
Y dually correspond to certain continuous maps from the dual Priestley
space X of A to the co-compact dual Y? of Y. To be a bit more precise,
our results will be parametric in the choice of a basis B for the open sets
of the stably compact space Y. A sheaf will be called B-flasque, or flasque
on the basis B, if each section over a basic open set extends to a global
section. We will identify the relevant property for a continuous map from
X to Y? to be dual to a B-flasque sheaf; such maps will be called B-patching
decompositions. Our main theorem is then the following.

Theorem 3.3.7. Let A be a distributive lattice with dual Priestley space X, and
let Y be a stably compact space with lattice basis B. The B-flasque sheaves over
Y with lattice of global sections A are in one-to-one correspondence with the B-
patching decompositions of the space X over Y°.

Outline of the chapter. We first recall some preliminaries on sheaves of
distributive lattices and stably compact spaces in Section 3.1. In Section 3.2
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we show that any B-flasque sheaf F gives rise to a lattice homomorphism
from B°P to the congruence lattice of the lattice of global sections of F. We
subsequently show that such a lattice homomorphism can be lifted to ob-
tain a frame homomorphism from the open sets of the co-compact dual
of the base space to the frame of congruences. From there, we obtain a
continuous decomposition. In Theorem 3.2.7, we concretely describe this
decomposition in terms of the sheaf of departure. In Section 3.3, we then
identify the decompositions which correspond to B-flasque sheaves (Propo-
sition 3.3.6), allowing us to prove our main theorem, Theorem 3.3.7. We end
the chapter by giving an application to the dual spaces of products, and we
discuss how Theorem 3.3.7 can also be applied to sheaves of distributive
lattices with additional operations, as this will be important for applications
in Chapter 4.

3.1. Preliminaries on sheaves and topology

We briefly review the well-known correspondence between sheaves and
étalé spaces. We refer to [108, Chapter 2] for further background. Here, we
give some details for the particular case of sheaves of distributive lattices.

Definition 3.1.1. Let Y be a topological space. A presheaf of distributive lat-
tices over Y is a functor F : Q(Y)°? — DL. If U C V, then the map
F(U C V) : F(V) — F(U) is denoted by (—)|v,u, or also by (—)|y. A
presheaf F of distributive lattices is a sheaf if, for any collection of open sets
(U;)ier and for any collection (s;);c; with's; € F(U;), if 5i|u,nu]- = Sj|uimuj

for alli,j € I, then there exists a unique s € F(U;c; U;) such that s|y, = s;
foralli € I.

Let F be a presheaf of distributive lattices over Y. For y € Y, the stalk of F at
y, Fy, is the colimit of the directed system of homomorphisms

((=)lu : F(V) = F(U))yeucv- Let E be the disjoint union of the stalks
of Fand let p : E — Y be the map sending e € F, to y. Note that, for any
U € Q(Y), each element s of F(U) determines a function s : U — E, by
letting 3(y) be the image of s € F(U) under the colimit map F(U) — F,. Let
o be the topology on E generated by taking all the images of these functions
$, where U ranges over Q(Y) and s ranges over F(U), as a subbasis for the
open sets. One may then show that p : E — Y is a local homeomorphism,
i.e., that p is continuous and every point of E has an open neighbourhood
U such that p(U) is open and p : U — p(U) is a homeomorphism. The
set E, equipped with this topology o, is called the étalé space of germs as-
sociated to F. Since each stalk F, is a distributive lattice, the étalé space E
is naturally equipped with partial binary operations V, A whose domain is
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ExyE :={(e,¢) € E| p(e) = p(¢)}, and two functions 0 : Y — E and
1:Y — E, which send a base point ¥ € Y to, respectively, the elements
0, and 1, of F,. It is straightforward to verify that V, A, 0,1 are continuous
(here, for V and A, the topology on E Xy E is the topology inherited from
the product E x E). We refer the reader to, e.g., [70, I1.1.2] or [108, IL.7] for
more details on this construction.

Definition 3.1.2. An étalé space of distributive lattices over a base space Y is
a space E with a continuous map p : E — Y such that (i) p is a local homeo-
morphism; (ii) for each y € Y, the set p~!(y) is equipped with a distributive
lattice structure; (iii) each of the maps V : EXy E — E, A: EXyE — E,
0:Y —> E,1:Y — E is continuous.

Given an étalé space p : E — Y of distributive lattices, one may associate
to it the sheaf F of local sections: for each open set U of Y, F(U) is defined to
be the sublattice of [,y p~1(y) consisting of those elements s which are
continuous when viewed as maps s : U — E. If U, V are open sets in Y and
U C V, then the map (—)|y : F(V) — F(U) is defined as the restriction of
the projection [T,y p~ (y) = ITyeu p~ ' (y). In this context, the set F(Y) is
called the lattice of global sections of the étalé space E. One may now show
that F is indeed a sheaf of distributive lattices in the sense of Definition 3.1.1.
For easy reference throughout this chapter, we record the following facts as
a theorem (cf., e.g., [108, IL.6] for the proof).

Theorem 3.1.3. The constructions of the sheaf of local sections and the étalé space
of germs are mutually inverse up to isomorphism. In particular, for any sheaf F of
distributive lattices over Y, the distributive lattice F(Y') is isomorphic to the lattice
of global sections of the étalé space of germs of F.

Notation. Throughout this chapter, unless otherwise mentioned, when-
ever we use the word “sheaf” or “étalé space”, this should be understood to
mean “sheaf of distributive lattices” or “étalé space of distributive lattices”.

We now prove two preliminary facts about about stably compact spaces
that we will use in this chapter. The first is well-known.

Lemma 3.1.4. Let Y be a stably compact space with specialization order <. If
K C Y is compact in the co-compact dual topology Y°, then 1K is closed in Y.

Proof. Any Y°-open cover of K is also a Y?-open cover of 1K, since Y?-open
sets are upsets. Therefore, TK is compact in Y?, and it is also saturated
in Y9, since it is an upset in the specialization order of Y. We conclude
that 1K is compact-saturated in Y?, so it is closed in Y by Theorem 2.1.8 in
Chapter 2. O
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The last simple lemma, which shows how a lattice basis of a stably compact
space interacts with the co-compact dual topology, will be crucial in the
proof of Proposition 3.2.4.

Lemma 3.1.5. Let Y be a stably compact space and let B be a lattice basis for the
open sets of Y. For any open set W in Y°, if y € W, then there exists a Y°-open set
V and a basic Y-open set U € B suchthaty €¢ V. C U° C W.

Proof. Let W be an open set in Y? and y € W. Since Y? is a locally compact
space, there exist a Y%-open set V and a Y?-compact-saturated set K such
thaty € V. C K C W. Since K°isopeninY, W¢ C K = J{U € B|U C K°}.
Since W is open in Y9, the set W€ is compactin Y, so, since B is a lattice basis,
there exists U € B such that W¢ C U C K°. Taking complements, we see
that K C U° C W. In particular, we have V C U C W, as required. O

This last lemma is essentially known and has been used in the literature on
stably compact spaces (e.g., [88], [100]), but we have not been able to find a
source where it is stated and proved explicitly in this form.

3.2. Decompositions from sheaves

In this chapter, we will work with sheaves that are flasque on a basis. This
concept generalizes the notion of flasque (or flabby) sheaf from the litera-
ture (cf., e.g., [70, Section 11.3.1] or [18, Section IL.5]).

Definition 3.2.1. Let F be a sheaf on a topological space Y, and let B be a
basis of open sets for the space Y. We say that F is flasque on B, or B-flasque
if, for every U € B, the restriction map F(Y) — F(U) is surjective.

With this definition, a sheaf F is flasque in the traditional sense of the word
if, and only if, F is “Q(Y)-flasque”, where Q)(Y) is the collection of all open
sets of Y.

If p : E — Y is the étale map corresponding to a sheaf F, then F is B-flasque
if, and only if, any continuous section s over a basic open set U € B can be
extended to a global continuous section.

Suppose F is a sheaf over a base space Y which is flasque on a basis B for
the space Y. The assignment

Oy

U — 0(U) = ker(F(Y) F(U)), (U € B) (3.1)

naturally defines a function 9 from B to the frame Con(F(Y)) of congru-
ences of the distributive lattice F(Y).
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Proposition 3.2.2. Let F be a sheaf over a base space Y which is flasque on a lattice
basis B for the space Y. Then the function O defined in (3.1) is a homomorphism
from B°P to Con(F(Y)), and any two congruences in the image of O permute.

Proof. Note that 9f : B°° — Con(F(Y)) is order-preserving. This follows
from the fact that, for any U, U’ € B with U C U/, the following diagram

commutes:
AN

F(U) L F(U)

We now prove that d9r sends unions in B to intersections in Con(F(Y)).
Let Y C B be a finite subset. Since O¥r is order-preserving, we clearly
have that 9p(UU) C Nyey 9r(U). For the other inclusion, suppose that
(a,b) € 9p(U) for all U € U. Then both a||j; and b| s are patches of the
compatible family (a|i)ycy = (b|lu)uey, and therefore they are equal by
the uniqueness part of the sheaf property. Thus, (a,b) € 9r(UU), as re-
quired. We now prove that ¢r sends finite intersections in B to finite joins
in Con(F(Y)). Clearly, 9r(Y) = A = Lcon(r(y)), 50 U sends the empty
intersection to the empty join. Now let Uj, U, € B. It suffices to prove that
the following inclusions hold:

Op(Uy) vV Op(Uz) C Op(Uy NUy) C 9p(Uy) o Op(L>). (3.2)

Then, since Op(Uy) o 9p(Uz) € Op(Uy) V 9p(Uy) always holds in the con-
gruence lattice, we will have equality throughout, as required. Note that
this argument shows in particular that any two congruences in the image
of 9r permute. We now prove the inclusions in (3.2). The first inclusion
is clear from the fact that 9r is order-preserving. For the second inclusion,
suppose that (a,b) € ¢p(U; N Uy). Then {a|y,, bl } is a compatible family.
Thus, by the existence part of the sheaf property, pick ¢ € F(U; U Uy) such
that c|y, = aly, and c|y, = b|y,. Since U; UU, € B and F is B-flasque, the
map F(Y) — F(U; U L) is surjective. Pick d € F(Y) such that d|y,uu, = c.
We now have that d|y;, = c|ly, = aly,, so (a,d) € 9p(U;), and similarly
(d,b) € 9p(Uy). Therefore, (a,b) € 9p(Uy) o 9p(Uy), as required. O

Remark 3.2.3. We note that Proposition 3.2.2 in particular implies well-
known results on sheaves over Boolean spaces from [20], [30], as follows.
Suppose that Y is a Boolean space. Notice that any sheaf F with at least
one global section is flasque on the canonical basis B of clopen sets for Y.
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It now follows from Proposition 3.2.2 that, for any clopen set K € B, the
congruence 9r(K) has a complement 9¢(K°) in the lattice Con(F(Y)), with
which it permutes. Thus, 0r is a homomorphism from B°P to the Boolean
algebra of factor congruences of F(Y). Now, the Boolean algebra of factor
congruences of F(Y) is a subalgebra of the Boolean algebra of clopen sub-
sets of the Priestley dual space X of the lattice F(Y) (cf. Example 1.1.13 in
Chapter 1). By Stone duality for Boolean algebras, the homomorphism ¢
now corresponds to a continuous function qr : X — Y. The function gp
gives a disjoint decomposition of X, indexed over Y, where each set in the
decomposition is an order component of X (cf. [76, 49]). Note that, for each
Yy € Y, the closed subspace g7 ! (y) of X is dual to the stalk Ay of Faty.

In the rest of this chapter, we generalize the construction in Remark 3.2.3
to the context where Y is an arbitrary stably compact space, instead of a
Boolean space. To this end, we will first show that, if Y is a stably compact
space, then the homomorphism ¢F can be lifted to a frame homomorphism
from the open sets of the co-compact dual Y? to the frame of congruences
of F(Y). This obviously follows from the following, slightly more general,
result.

Proposition 3.2.4. Suppose that B is a lattice basis for the open sets of a stably
compact space Y and that h : B°P — M is a lattice homomorphism from B°F into
a frame M. Then the function h : Q(Y®) — M defined by

(W) :=\/{h(U)| U € B, U° C W}
is a frame homomorphism.

Proof. Ttis clear that 1 is order-preserving. Note that I preserves the empty
intersection, since h(Y) = \/{h(U) | U € B, U° C Y} > h(®) = T. Us-
ing that M is a frame and that & is a homomorphism from B°P to M, a
straightforward calculation shows that i preserves binary meets. To prove
that /i preserves arbitrary joins, let (W;);c; be a collection of open sets of
Y?. We need to show that h(U;c; Wi) < V,e; h(W;), as the other inequality
is clear from the fact that  is order-preserving. Let Uy € B be arbitrary
such that (Up)¢ C Ujc; Wi. We need to show that ii(Ug) < V;e; B(W;). By
Lemma 3.1.5, for each i € I we have that

W; = J{V € Q(Y?) | there exists U € B such that V C U° C W;}.

Hence, the collection C := {V € Q(Y?) | I € LU € B:V C U° C W;}
is an open cover of the set (Up)¢. Since Uy is open in Y, its complement
(Up)° is compact in Y. Let F C C be a finite subcover. For each V € F,
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pick iy € I and Uy € B such that V C (Uy)® € W;,. We then have
(Uo)* € UverV C Uyer(Uy)S, so that Nycr Uy C Up. Also, for each
V € F, we have that (Uy)¢ € W;,, so that h(Uy) < h(W;,), by definition
of 1. Therefore, since /1 is a homomorphism from B°P to F, we have that
h(Up) < Vyer h(Uy) < Vierh(W;), as required. m

Combining Propositions 3.2.2 and 3.2.4, we conclude:

Theorem 3.2.5. Let F be a sheaf over a stably compact space Y which is flasque
on a lattice basis B for Y. Then the function O defined by

Or(W) == \/{ker(F(Y) — F(U)) | U € B,U° C W}
is a frame homomorphism from Q(Y?) to Con(F(Y)).

We warn the reader that the function @; is not an extension of the function
9F defined in (3.1), at least not in the naive sense of the word ‘extension’.
However, note that if U is a compact-open set in Y, then U will always be in
the lattice basis B, and the complement U° of U will be open in Y. 1t then
follows easily from the definitions that, for U compact-open in Y, we have
Op(U°) = 0p(U).

Remark 3.2.6. The function 8 in this theorem generalizes the construction
of the stalk of a sheaf, in the following sense. Let < denote the specialization
order of Y. For any point y € Y, the set Wy, := (ly)® is an open set in Y9. By
definition, {9\;(Wy) is the smallest congruence containing each congruence
Op(U) = ker(F(Y) — F(U)), where U € B and y € U. By the definition of
stalk and the fact that F is B-flasque, this congruence is precisely the kernel
of the restriction map F(Y') — F, onto the stalk of F aty. Hence, the quotient

F(Y) — F(Y) /EE(Wy) is isomorphic to the stalk quotient F(Y) — F(Y),.

Write A := F(Y) for the distributive lattice of global sections of F, and
X for the Priestley dual space of A. Recall from Priestley duality (Proposi-
tion 1.1.12) that there is a frame isomorphism ¢ : (Con(A), C) — (Cl(X), D),
which sends a congruence ¢ to the closed subset ¢(¢) of X, consisting of
those x € X such that, forall (a,b) € %, x €ad > x € b. For y €Y, we write
Xy, for the closed subspace corresponding, via ¢, to the kernel of the stalk
quotient A — Ay. Thus, from the sheaf F, we obtain a relation RF C X x Y,
defined by xRry <= x € X,,. In the following theorem, we show that this

relation is the upset of the graph of a continuous function from X to Y?.
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Theorem 3.2.7. There exists a unique continuous function g : X — Y° such
that the following diagram commutes:

Q(Y9)
Ea
Con(A) (o Q(x)

Moreover, for any x € X,y € Y, we have qp(x) < y if, and only if, x € X,,.

Proof. Write hp for the composite (—)° o ¢ o 8 : Q(Y?) — Q(X), whichis a
frame homomorphism by Theorem 3.2.5 and the fact that (—)¢ o ¢ is a frame
isomorphism. By the duality between sober spaces and spatial frames (cf.
Theorem 1.2.7), there exists a unique continuous function g : X — Y? such
that (qr) ! = hp, i.e., such that the diagram commutes. Write W, := (ly)°
for y € Y. Now note that, forany x € Xandy € Y,

gr(x) <y <= x & (qp) "(Wy) = hp(Wy) <= x € p(0p(Wy)) = X,

Here, the equality ¢ (95 ( Wy)) = Xy follows from Remark 3.2.6. O

Note that, by this theorem, for each x € X, the value of gr(x) is the mini-
mum of the set xRp(-) = {y € Y | x € X, } with respect to the specialization
order of Y. If Y is a Boolean space, then gr defined here coincides with the
function gr from Remark 3.2.3. More generally, if Y is a compact Hausdorff
space, then Y = Y? and the specialization order is trivial, so that the set
xRp(-) is a singleton for each x € X. Thus, in this case, qr is a continu-
ous function from X to Y which decomposes X as a disjoint union of closed
subspaces X;,. In the general case where Y is a stably compact space, the
subspaces X, need not be mutually disjoint (indeed, as we will see shortly,
the subspaces can even be contained one in the other), but we will still think
of qr as a (generalized, ordered) “decomposition”. All this inspires the fol-
lowing definition.

Definition 3.2.8. We call the continuous map gr : X — Y9 defined in The-
orem 3.2.7 the decomposition of the Priestley space X associated to the sheaf F.

We now use the decomposition gr to describe the closed subspaces of X
that dually correspond to the quotients A — A, fory € Y,and A — F(U),
for U € B.
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Proposition 3.2.9. Let qr : X — Y be the decomposition associated to the
sheaf F.

1. For anly y € Y, the dual of the quotient A — Ay is the closed subspace
(7))~ (Ly).

2. For any U € B, the dual of the quotient A — F(U) is the closed subspace
(qp) 1 (U)-

Proof. Note that it follows from the theorem that, forany x € X andy € Y,
we have x € X, if, and only if, gr(x) < y in the specialization order of Y.
Hence, (7r) " (ly) = X, and the latter is by definition the closed subspace
dual to the quotient A — Ay. For the second item, note that the kernel of
A — F(U) is the intersection of the kernels of A — A,, where y ranges
over U. By Priestley duality (Proposition 1.1.12), the dual of the quotient
A — F(U) is therefore equal to U,y Xy- By the firstitem, X, = (qr) ' (1y).
Since open sets are downsets, we have U = U,y 1, from which the result
follows. O

In particular, if U is compact-open in Y, then U € B and U is closed in
Y9. By continuity of g, it then follows that (qr) ' (U) is closed. So, in this
case, by Proposition 3.2.9.2, the dual of the quotient A — F(U) is equal to
(a7) 1 (U).

Proposition 3.2.9 shows that the essential information of the sheaf F can be
reconstructed from the decomposition gr. In the next section, we will give
necessary and sufficient conditions for a continuous map X — Y? to be the
decomposition of X corresponding to some sheaf F.

3.3. Sheaves associated to decompositions

Notation. Throughout this section, X always denotes a Priestley space with
dual distributive lattice A, and Y denotes a stably compact space, whose
specialization order we denote by <.

We now describe the reverse of the process described in the previous sec-
tion: from an arbitrary decomposition, we can define a sheaf. Suppose that
q: X — Y? is a continuous map to the co-compact dual of Y. With the aim
of associating an étalé space to g, we observe the following. The set |y is
closedin Y? forany y € Y, whence X, := g~ !(ly) is closed. Let f,: A — A,
be the quotient corresponding to Xy via Proposition 1.1.12, so that the ker-
nel of fy is the congruence 9, defined by

atyb = ﬁﬂXy:EﬁXy.
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Now, forany y,z € Y, if y < z then ¢, C ¢y. (Indeed, y < z entails |y C |z,
so Xy € X;. By Proposition 1.1.12, this is equivalent to ¢, C ¢,.) Thus,
whenever y < z, we have a quotient map f;,: A; - A, which corresponds
under Priestley duality to the subspace inclusion Xy — X, namely, the
unique map such that f; y o f. = f,,.

We now standardly construct an étalé space over Y whose stalks are the
distributive lattices Ay. Let Eq denote the disjoint union of the sets Ay, for
y € Y,and let p: E; — Y be the map [a]5, € Ay — y € Y. The unique étalé
topology on E; can be described as follows. Any a € A has an associated
global section s;: Y — E; of p thatactsbyy € Y — [a]5, € Ay. Let o be the
topology on E; generated by the subbasis {s,(U) | a € A, U openin Y}.

Proposition 3.3.1. If E; is equipped with the topology o, then for any a € A, the
section s,: Y — Eg is continuous, and p : Eg — Y is an étalé space of distributive
lattices.

Proof. For the first statement, it suffices to show that the inverse image un-
der s, of a subbasic set is open in Y. To this end, let b € A and U open
in Y, and consider the inverse image s, ! (s;(U)). Writing 4 to denote set-
theoretic symmetric difference, for any y € Y we have:

y€s, ' (sp(U)) <= y € Uand [a]y, = [b]y,,
— yEUandﬁﬂXyzgﬂXy,
= yEUandeeXy:xgﬁAE,
— yelUn(tq@ab)).

(For the last equivalence, recall that x € X, iff g(x) < y by definition.)
Thus, the set s, !(s,(U)) is equal to U N (14(@ & E))C We now show that
(19(@ & b))° is open. Since @ a b is closed in the Priestley space X, it is
compact. By continuity of g, 4(a & E) is compact in Y?. By Lemma 3.1.4,
Tq(@a E) is closed in Y, so its complement is open. This concludes the proof
that s, is continuous. Now note that p is continuous: if U C Y is open,
then p~1(U) = Uaea sa(U), which is open in the topology . To see that
p is a local homeomorphism, let e € E;. Picka € A and y € Y such that
e = [a]y,. Then V := s,(Y) is an open set around e, and s, is a continuous
inverse to p|y. Each set p~!(y) = Ay is equipped with the structure of a
distributive lattice. It remains to show that all the operations are continuous
in the sense of Definition 3.1.2. Since 0,1 € A, the functions sy : Y — E,
and s : Y — E; are continuous. Now, to show that V : E; Xy E; — Ej is
continuous, let a € A and U open in Y, and suppose that (¢,e’) € E; xy E4
such that e Ve’ € s,(U). By definition of E; xy E; and s,, pick y € Y and
b,b' € Asuchthate = f,(b), ¢’ = f,(V') and f,(b) V fy (V') = fy(a). Now
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we have bV b € A, so the function sy, is continuous, and therefore the
set V := (spyp) (s.(U)) is open in Y. One now easily checks that the
function V maps the open neighbourhood (s,(V) x sy (V)) N (Ey Xy Ey)
of (e,¢’) entirely into s,(U), so that V is continuous. The proof that A is
continuous is the same. 0

Definition 3.3.2. For g: X — Y? a continuous map from a Priestley space
X to the co-compact dual of a stably compact space Y, we call the space
(Eq,0) with the map p: E; — Y defined above the étalé space associated to
g. The corresponding sheaf over Y will be denoted F; and called the sheaf
associated to q.

We will now proceed to show that this process of associating a sheaf to
a function ¢ is indeed the reverse of the process of associating a decom-
position to a B-flasque sheaf. Recall from Theorem 3.1.3 that the set of
global sections F;(Y) of the étalé space p : E; — Y has the structure of
a distributive lattice, being a sublattice of the direct product [],cy Ay of
distributive lattices. By Proposition 3.3.1, there is a well-defined function
fg: A — F;(Y) which sends a to 17,(a) := s,.

Lemma 3.3.3. Forany continuous map q : X — Y, the function g A — Fy(Y)
is an injective lattice homomorphism.

Proof. Tt is clear from the definition of F,(Y) that 77, is a homomorphism.
We prove that 7, is injective. If 4,b € A and a # b, then, by Priestley
duality, there exists x € X such that x is in exactly one of @ and b. Let
¥ := q(x). Then in particular x € X, so thata N X, # s Xy, and therefore
fy(a) # fy(b), by definition of f,. We conclude that s;(y) # s,(y), so that
nq(a) # 14(D). O

The following key definition dually characterizes those continuous maps
g which correspond to B-flasque sheaf representations of the distributive
lattice A.

Definition 3.3.4. Let X be a Priestley space and Y a stably compact space
with lattice basis B. A continuous map q : X — Y° is a B-patching decompo-
sition of X over Y if it satisfies the following property for all U € B:

(Py) If (U;)ie; is a collection of open sets in Y, U = U;e; U;, and (D;) ;e is
a collection of clopen downsets in X such that, foralli,j € I,

D;N qil(ui N U]) = D]‘ N qil(ui N LI]),

then there exists a clopen downset D in X such that
D g7 (U) = User (D N~ ()
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Lemma 3.3.5. Let q : X — Y be a continuous map from a Priestley space X
to the co-compact dual of a stably compact space Y, and let p : E; — Y be the
étalé space associated to q. For any open set U of Y, the following statements are
equivalent:

1. The function q satisfies the property (Py) in Definition 3.3.4;

2. Ifs : U — E, is a continuous section of p over U, then there exists a € A
such that (s;)|y = s.

Proof. Let U C Y be open. For (1) implies (2), suppose thats : U — E,
is a continuous section over U. For each y € U, we have s(y) € Ay, so
by definition we can pick b(y) € A such that s(y) = f,(b(y)). The set
Uy := s‘l(sb(y) (Y)) is open since s is continuous. Write D, for the clopen

—

downset b(y) of X. We will now show that (Uy),cy and (Dy),cu satisfy
the assumptions of property (Py) in Definition 3.3.4. Clearly, U = U,cy; Uy.
Note that, for any z € U,, we have s(z) = sy(z) = f:(b(y)), but also
s(z) = fz(b(z)) by definition of b(z), so f.(b(y)) = fz(b(z)). Thus, by
definition of f;, D, and D, we get that D, N X; = D, N X; for any z € U,.
Lety,y' € Uandletx € D, Ng (U, N U,). Writing z := q(x), we get that
x € DyNX, =D.NX; =Dy NX, because z € U, and z € Uy We have
now proved that D, Ng~!(U, N U, ) C Dy, and the other inclusion follows
by symmetry. Since g satisfies (Py;), pick a clopen downset D in X such that

Dng ' (u) = J (Dy ng~(Uy)). ()
yeY

Since X is the dual space of A, pick a € A such that@ = D. We now
show that (s;)|y = s. Lety € U be arbitrary. By definition of b(y),
we have s(y) = f,(b(y)). We need to show that f,(a) = fy(b(y)), or,

—

equivalently, that 2N X, = b(y) N X;,. Let x € X, be arbitrary. We show

that x is in @ if, and only if, x is in b(y). By definition of X,, we have
q(x) <y € Uy, soq(x) € U, since U, is open. Therefore, if x € @ = D, we
havex € DNg ' (U),and by (*) thereis y’ € Y such thatx € D,y Ng~*(Uy).

We then also get x € Dy N qil(uy NnuUy) € Dy = b/(\y), as we already

proved above. Conversely, if x € b(y), then x € D, Ng~1(U,), so it follows
from (*) that x € D Ng~1(U).

For (2) implies (1), let (U;);c; and (D;);cs be as in the assumptions of (Pyy).
For each i € I, pick b; € A such that bAl = D;. Note that, for any 7,j € I, if
y € U;NUj, then Xy = 7 '(ly) Cqg U N U;), and it therefore follows by
the assumption of (Py) that D; N X, = D; N Xy, i.e., fy(b;) = fy(b;). We de-
fine a sections : U — E; of p. Fory € U, picki € I such thaty € U;, and let
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s(y) := fy(b;). The definition of s(y) does not depend on the choice of i by
our remarks above. We show that s is continuous. To this end, letb € A and
V C Y open, and suppose that s(y) = s;(y) forsomey € UNV. Picki € I
such that y € U;, so thats(y) = f,(b;). Theset W := (s;) (s, (Y)) N U; NV
is open in Y since s, is continuous, and contains y. Note that, for any
z € W, we have s5(z) = s,(z) since z € U;, and s5,(z) = sp(z) since
z € (sp) " (sp,(Y)). Hence, s = s, on an open neighbourhood of y, prov-
ing that s is continuous. By (2), pick a € A such thats = (s;)|y. It
remains to prove that the clopen downset D := 7 satisfies the equality
Dng Y (U) = Uje;(Di N g1 (U;)). If y € U;, then from the chain of equal-
ities fy(a) = sa(y) = s(y) = fy(b;) we get that DN X, = D; N X,. The
equality now easily follows from the fact that x € g~!(U) if, and only if,
x € g~ 1(U;) for some i € I. O

Proposition 3.3.6. Let q: X — Y° be a continuous map from a Priestley space
X to the co-compact dual of a stably compact space Y with a lattice basis B, and let
F; be the sheaf associated to q. The following statements are equivalent:

1. The map q is a B-patching decomposition of X over Y°;
2. The sheaf Fy is B-flasque and the map 17, : A — F;(Y') is an isomorphism.

Proof. For (1) implies (2), note that in particular g satisfies (Py). Therefore,
by Lemma 3.3.5, the function 7, is surjective, and thus an isomorphism by
Lemma 3.3.3. Also, since each s, is a continuous global section by Propo-
sition 3.3.1, Lemma 3.3.5 and the fact that g satisfies (P) for all U € B
together imply that F, is B-flasque. For the direction (2) implies (1), assume
that F; is B-flasque and 7, is an isomorphism. Note that g then satisfies con-
dition (2) in Lemma 3.3.5 for any U € B. Therefore, by Lemma 3.3.5, g is a
B-patching decomposition. O

Theorem 3.3.7. Let A be a distributive lattice with dual Priestley space X, and
let Y be a stably compact space with lattice basis B. The B-flasque sheaves over
Y with lattice of global sections A are in one-to-one correspondence with the B-
patching decompositions of the space X over Y°.

Proof. We prove that the assignments F — qr (Definition 3.2.8) and g — F;
(Definition 3.3.2) are mutually inverse up to isomorphism. By Proposi-
tion 3.3.6, if g : X — Y? is a B-patching decomposition, then the associated
sheaf F; is B-flasque and has A as its lattice of global sections, modulo the
isomorphism 7;. Letq' := ¢ r, be the decomposition associated to F,. By def-
inition of F,, the stalk of F, at y € Y is the lattice A, dualto X, = g~ (ly). It
now follows immediately from the definition of 4’ that 4’ = g, modulo the
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homeomorphism (F;(Y))s = X that is dual to the isomorphism 7,. Con-
versely, if F is a B-flasque sheaf over Y whose lattice of global sections is A,
let gr : X — Y? be the decomposition associated to F and let F/ := Fy; be
the sheaf associated to qr. By definition, the stalk of the sheaf F’ aty € Y is
the lattice dual to q;l (ly) € X, which is exactly the stalk A, of the sheaf F
at y, by Proposition 3.2.9. Hence, the étalé space of I’ is isomorphic to the
étalé space of F, and therefore F and F’ are naturally isomorphic as sheaves
by Theorem 3.1.3. In particular, F' = F;, is B-flasque and 7, is an isomor-
phism, so that gr is a B-patching decomposition by Proposition 3.3.6. O

The proof of this theorem shows that there is a bijection between the set of
isomorphism classes of B-flasque sheaves over Y whose lattice of global sec-
tions is isomorphic to A, and the set of isomorphism classes of B-patching
decompositions over Y? of spaces homeomorphic to the space X. This bi-
jection can be extended to an equivalence between a category of sheaves
of distributive lattices that are flasque on a basis and a category of patching
decompositions of Priestley spaces. We leave the precise formulation of this
equivalence to future work.

Example 3.3.8. Suppose that A is a distributive lattice which is a direct
product of a collection (A;);c; of distributive lattices. We apply our analysis
in this chapter to prove that the Priestley space X dual to A has a decom-
position over the Boolean space Y := BI, the Stone-Cech compactification
of the set I with the discrete topology. We denote the basis of clopen sets
for Y = P(I). by B= {5 | S C I}. There is a sheaf F over Y such that, for
each S C I, F(S) = [T;cs A;. Indeed, it is easy to see that F is a sheaf on the
basis of clopen sets, so that it extends to a sheaf over Y, cf. [108, Theorem
IL.1.3]. The stalk of F at y € Y is the ultraproduct A, of (A;);cs over the
ultrafilter y. By Theorem 3.1.3, the direct product [];c; A; can be identified
with the global sections of the sheaf F, that is, the Boolean product of the
ultraproducts A,. We remark in passing that this is the essential observa-
tion underlying the well-known Jénsson’s Lemma in universal algebra [83],
also see [58, Theorem 3.17].

By Remark 3.2.3, the sheaf F is B-flasque. Note that, since Y is a Boolean
space, Y = Y? and the specialization order on Y is trivial. Therefore, by
Theorem 3.3.7, there is a B-patching decomposition qr : Ax — Y. We con-
clude that the dual space X of a direct product [];c; A; of distributive lattices
decomposes as the disjoint union of closed subspaces Xy, for y € BI, where each
Xy is the distributive lattice dual to the ultraproduct of (A;);c; over the ultrafil-
ter y. This fact was proved by different methods in [94, Proposition 3.11]
and has recently been applied in the study of forbidden configurations in
Priestley spaces, cf. e.g. [5].
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We briefly discuss how the results in this chapter can also be applied to dis-
tributive lattices with additional operations. If the distributive lattice A is
equipped with an additional n-ary operation f : A" — A that preserves
or reverses joins or meets in each coordinate, then this operation can be
represented as an (1 + 1)-ary relation R C X x X" on the Priestley dual
space X of A (cf., e.g., [52, Section 2]). Suppose that F is a sheaf of distribu-
tive lattices with global sections A. Then F is also a sheaf with respect to
the additional operation f if, and only if, each stalk map A — A, respects
the operation f. This condition holds if, and only if, each subspace Xy is a
generated subframe with respect to R, that is, for any x, xq,...,x, € X, if
X1,..., % € Xy and xR(x1,...,X,), then x € X,.

Concluding remarks

In Theorem 3.3.7, we obtained a one-to-one correspondence between B-
patching decompositions and B-flasque sheaves. We believe that there is
a more general result which holds for sheaves which are not necessarily
B-flasque; we leave the precise statement of this result to further work.
Another natural question that we will leave to future work is whether the
one-to-one correspondence in Theorem 3.3.7 can be extended to an equiv-
alence between appropriate categories of B-patching decompositions and
B-flasque sheaves.
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Chapter 4. Sheaf representations of
MV-algebras and lattice-
ordered abelian groups

We study representations of MV-algebras — equivalently, unital lattice-ordered
abelian groups — through the lens of Stone-Priestley duality, using canonical ex-
tensions as an essential tool. Specifically, the theory of canonical extensions im-
plies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of
topological partial commutative ordered semigroups. We use this structure to ob-
tain two different decompositions of such spaces, one indexed over the prime MV-
spectrum, the other over the maximal MV-spectrum. These decompositions yield
sheaf representations of MV-algebras, using the results developed in Chapter 3. Im-
portantly, the proofs of the M\V-algebraic representation theorems that we obtain in
this way are distinguished from the existing work on this topic by the following
features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that
the two aforementioned sheaf representations are special cases of a common result,
with potential for generalizations; and (3) we show that these results are strongly
related to the structure of the Stone-Priestley duals of MV-algebras. In addition,
using our analysis of these decompositions, we prove that MV-algebras with iso-
morphic underlying lattices have homeomorphic maximal MV-spectra. This result
is an MV-algebraic generalization of a classical theorem by Kaplansky stating that
two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of con-
tinuous [0, 1]-valued functions on the spaces are isomorphic. This chapter is a
modified version of the paper [65].

MV-algebras were introduced by C. C. Chang [23] to provide algebraic se-
mantics for Lukasiewicz infinite-valued propositional logic [25], thus play-
ing an analogous role to that of Boolean algebras in classical propositional
logic. As proved in [120, Theorem 3.9], MV-algebras are categorically equiv-
alent to unital lattice-ordered abelian groups: the unit interval of any such
group forms an MV-algebra, from which the original group and order struc-
ture can be naturally recovered; and all MV-algebras arise in this manner.
MV-algebras also entertain a wide range of connections with other realms
of mathematics, including probability theory, C*-algebras and polyhedral
geometry; see [121] for a recent account.

In this chapter we study the Stone-Priestley dual spaces of MV-algebras, by
which we mean the Stone-Priestley dual spaces of the underlying lattices
of MV-algebras equipped with the structure coming from the MV-algebraic
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operations. There are several dualities for MV-algebras and lattice-ordered
groups (henceforth abbreviated as “/-groups”) that generalize Stone du-
ality for Boolean algebras. These results can be roughly divided into two
strands. In the first strand one views MV-algebras as groups with a compat-
ible lattice order, in light of the categorical equivalence mentioned above,
and looks for representations by continuous real-valued functions in the
style of the Stone-Gelfand duality theory for commutative C*-algebras. At
the center of this first strand, there is the Baker-Beynon duality between
finitely presented abelian ¢-groups and homogeneous rational polyhedral
sets [3, 11]. The affine version of this result shows that finitely presented
MV-algebras are the coordinate algebras of rational polyhedra under piece-
wise linear maps that preserve the arithmetic structure of the polyhedra
in an appropriate sense [113, 114]. These theorems highlight the profound
relationship between abelian /-groups, MV-algebras, and piecewise linear
arithmetic topology; for further recent manifestations of this phenomenon,
see e.g. [111, 109, 22, 110, 112, 123]. Dualities for other classes of MV-
algebras and /-groups that fall into this first strand can be found in [28,
26, 29].

The second strand of duality results for MV-algebras arises from viewing
MV-algebras as distributive lattices with two additional operations — and
@ and investigating the additional structure that these operations yield on
the Stone-Priestley dual space of the distributive lattice underlying the MV-
algebra. This approach can be traced back several decades in the litera-
ture on duality for MV-algebras and /-groups, see e.g. [9, 115, 116, 117,
118, 61, 62]. In particular, [117] establishes a duality theorem between /-
groups and a class of spaces dubbed “/-spaces”. The more recent papers
[61, 62] show that first-order axioms on the Stone-Priestley duals will cap-
ture a large class of varieties including MV-algebras, but these papers do
not consider MV-algebras specifically. In this chapter, we apply the general
insights gained in [61, 62] to the theory of MV-algebras per se, providing a
systematic approach to sheaf representations of MV-algebras by means of
their dual spaces. On the way to these results we obtain an MV-algebraic
generalization of a classical theorem by Kaplansky on the lattice of continu-
ous real-valued functions on a compact Hausdorff space [89]. We will now
explain our methodology and the ensuing applications in further detail.

A large part of the mathematical machinery used in this paper originates
in the theory of canonical extensions. Canonical extensions have been used
in the study of modal logic to provide algebraic proofs of the canonicity
of modal axioms; see e.g. [59]. Gehrke and Priestley showed in [60] that
one of the defining axioms of MV-algebras (specifically, equation (4.1) in
Section 4.1 below) is not canonical. The papers [61, 62] studied canonical
extensions and duality for double quasi-operators, i.e. operations that pre-



75

serve V and A in each coordinate, of which the MV-algebraic operations
— and @ are prime examples. We rely on the results obtained in [61, 62],
with particular focus on their repercussions for MV-algebras. In particular,
these results enable us to prove, in Proposition 4.3.7, that the dual Stone-
Priestley space of any MV-algebra has the structure of a topological partial
commutative ordered semigroup.

In order to study sheaf representations, we use the results from Chapter 3.
The setting of stably compact spaces allows us to uniformly treat sheaf rep-
resentations over both spectral and compact Hausdorff spaces. We show
that dual spaces of MV-algebras always admit patching decompositions in
the sense of Definition 3.3.4, thus providing a new view of sheaf represen-
tations for MV-algebras.

Sheaf representations for /-groups and MV-algebras originate with Keimel
[91], [12, Chapitre 10], who established inter alia a result for unital abelian ¢-
groups that translates in a standard manner to the following result for MV-
algebras: every MV-algebra is isomorphic to the global sections of a sheaf of
local MV-algebras on its spectral space of prime MV-ideals equipped with
the spectral topology. Here, an MV-algebra is local if it has exactly one max-
imal ideal. From Keimel’s work one easily obtains a compact Hausdorff
representation, by restricting the base space to the subspace of maximal
MV-ideals. In this form, the result was first proved for MV-algebras by
Filipoiu and Georgescu [46]; their paper is independent of Keimel’s treat-
ment of /-groups. One can also consider the collection of prime MV-ideals
equipped with the co-compact dual of the spectral topology. There exists a
sheaf representation over this base space whose stalks are totally ordered
MV-algebras, which may be regarded as easier to understand than local
MV-algebras. The price one pays for this simplification is that the base
space is a spectral space which is not T; in general, so that it has a non-
trivial specialization order. Such a representation for abelian (not necessar-
ily unital) /-groups was established by Yang in his PhD thesis [142, Proposi-
tion 5.1.2]; and in [142, Remark 5.3.11] the author remarked that the results
translate to MV-algebras via the categorical equivalence mentioned above.
In Poveda’s PhD thesis [126, Teorema 6.7], the same sheaf representation
of MV-algebras via the co-compact dual of the spectral topology on prime
MV-ideals was obtained. The interested reader is also referred to the papers
[132, 38]. For a further recent proof of the sheaf representation for ¢-groups
via the co-compact dual of the spectral topology, see [133]. For a more thor-
ough historical account of sheaf representations in universal algebra, with
particular attention to lattice-ordered groups and rings, see [92] and the ref-
erences therein.

Apart from giving a unified account of these results on sheaf representa-
tions for MV-algebras, we also use our analysis of the dual space of an MV-
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algebra to show that MV-algebras with isomorphic underlying lattices have
homeomorphic maximal MV-spectra equipped with the spectral topology
(Theorem 4.5.5). This result generalizes a theorem by Kaplansky [89] on
lattices of continuous functions; see Section 4.5 below for a more detailed
comparison.

Outline of the chapter. In Section 4.1 we discuss background on MV-
algebras. In Section 4.2, we discuss background on lifting maps and equa-
tions to the canonical extension. The analysis of the dual space of an MV-
algebra, carried out in Section 4.3, allows us to obtain in Section 4.4 a de-
composition of the dual Stone-Priestley space of an MV-algebra indexed
by the prime MV-spectrum. In Section 4.5 we prove the generalization of
Kaplansky’s theorem (Theorem 4.5.5). By combining the results of Chap-
ter 3 and Section 4.4, in Section 4.6 we establish both sheaf representations
of an MV-algebra discussed above. As related topics we also discuss the
Chinese Remainder Theorem for MV-algebras and the construction of an
explicit MV-algebraic term representing the sections occurring in the sheaf
representations.

4.1. MV-algebras and their spectra

In this section, we recall the basic definitions of MV-algebras and the dif-
ferent (lattice, prime, maximal) spectra that have been associated to them
in the literature. We also describe the relationship between these spectra
and the dual spaces of distributive lattices naturally associated to the MV-
algebra. We use a minimal amount of MV-algebraic theory in this paper.
Indeed, almost all results that we need can be found in [25, Chapter 1].
In particular, we neither assume Chang’s completeness theorem [25, 2.5.3],
nor even the easier subdirect representation theorem [25, 1.3.3]; the latter
is a straightforward consequence of the first sheaf representation given in
Section 4.6.

Background references for MV-algebras are [25, 121]. We recall that an MV-
algebra is an algebraic structure (M, &, —,0), where 0 € M is a constant,
— is a unary operation satisfying =—x = x, @ is a binary operation mak-
ing (M, ®,0) a commutative monoid, the element 1 defined as —0 satisfies
x @1 =1, and the law

“(xoy)®dy=-(-ydx)Dx 4.1)

holds. Any MV-algebra has a natural partial order defined by x < y if,
and only if, there exists z such that x @ z = y. This partial order is a dis-
tributive lattice order bounded below by 0 and above by 1, in which binary
suprema are given by x Vy = —(—x @ y) @ y. Thus, the characteristic law
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(4.1) states that x Vy = y V x. Meets can be calculated by the De Morgan
equation x Ay = —(-x V —y). It is common to call MV-chains those MV-
algebras whose underlying order is total. For m > 1 an integer, and x an
element of an MV-algebra, we often abbreviate by mx the m-fold addition
x@--- B x. Weset, as usual, x 8y := —(—-x @ y). Boolean algebras are
precisely those MV-algebras that are idempotent, meaning that x @ x = x
holds; equivalently, they are the MV-algebras that satisfy the tertium non
datur law x V —x = 1. For Boolean algebras, the operations @ and V coin-
cide, and © is the operation of logical difference, x A —y.

The real unit interval [0,1] € R can be made into an MV-algebra by defining
the operations x @ y := min {x +y, 1} and —x := 1 — x; the neutral element
is 0. The underlying lattice order of this MV-algebra coincides with the nat-
ural order of [0, 1]. Thus, in this example, & can be thought of as ‘truncated
addition’, and x © y as “truncated subtraction’, i.e. x S y = max {x —y,0}.
The example is generic by Chang’s Completeness Theorem: The variety of MV-
algebras is generated! by the standard MV-algebra [0, 1]. Chang’s original
proof is in [23, Lemma 8]; for a textbook treatment, see [25, 2.5.3]. How-
ever, as already emphasized above, our results are obtained independently
of Chang’s theorem.

An MV-ideal of an MV-algebra A is a subset I C A that is a submonoid
(i.e. contains 0 and is closed under @) and a downset (i.e. contains b € A
whenever it containsa € A and b < a). The MV-ideals of A are in natural bi-
jection with the MV-algebra congruences on A [25, 1.2.6], as follows. For an
MV-ideal I, two elements a,b € A are equal modulo I, notation a = b mod I,
if botha © b and b © a are in I. We write A/I to denote the quotient of the
MV-algebra A modulo the ideal I. An MV-ideal I C A is prime if it is proper
(i.e. I # A),and for each a,b € Aeither (a©b) € I,or (b©a) € 1.2 An MV-
ideal I C A is maximal if it is proper, and the only MV-ideal that properly
contains I is A itself. A standard argument shows that maximal MV-ideals
are prime. Each MV-ideal of A is a lattice ideal of A; cf. [121, Proposition
4.13]. Although the converse fails, we have:

Proposition 4.1.1 ([25, 6.1.1]). Let I be an MV-ideal of an MV-algebra A. Then
Lis a prime ideal of the underlying lattice of A if, and only if, I is a prime MV-ideal.

Notation. In this chapter, as in the rest of the thesis, whenever we say
‘ideal’ or ‘filter’, we mean ‘lattice ideal” or ‘lattice filter’. Thus, in this ter-
minology, an MV-ideal is an ideal that is moreover closed under .

Hence the subalgebra [0, 1] N Q also generates the variety of MV-algebras: if an evaluation
into [0, 1] makes two terms unequal, then by the continuity of the MV-algebraic operations on
[0,1] there also is an evaluation into [0, 1] N Q that makes those two terms unequal.

2The terminology “prime MV-ideal” is consistent with the terminology “prime (lattice)
ideal”, cf. Proposition 4.1.1 below.
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Proposition 4.1.2 ([25, 1.2.3(v)]). If f: A — B is an onto homomorphism of
MV-algebras, then the MV-ideal f~1(0) is prime if, and only if, B is totally ordered
and non-trivial.

We write (S) to denote the MV-ideal generated by the subset S C A, namely,
the intersection of all MV-ideals of A containing S. When S = {s} is a
singleton we write (s) instead of ({s}), and speak of principal MV-ideals.

Proposition 4.1.3. For any non-empty subset S of an MV-algebra A, we have
(S)={acAla<s @ @sy, for some finite set {s;}*_; C S}.

Furthermore, for any a,b,c € A we have (a) V (b) = (a®b) = (aVb), and
(a) N (b) = (a ADb). In particular, finitely generated and principal MV-ideals
coincide, and the principal MV-ideals of A form a sublattice of the lattice of all
MV-ideals of A.

Proof. The first assertion is [25, 1.2.1], and the remaining ones follow from
it through a straightforward verification. O

We now recall a few basic facts about the interaction between the MV-
algebraic operations and the order.

Lemma 4.1.4. In the following, a, b, and c are arbitrary elements of the MV-
algebra A.

1. The operation © is lower adjoint to ®,ie.a©b <c <= a<bdc.

2. The operation @ preserves all existing meets in each coordinate. That is,
for any set B C A such that )\ B exists, N\pcp(b @ a) also exists, and we
have N\pcp(b @ a) = (A\B) @ a. Similarly for the second coordinate. In
particular, @ is order-preserving in each coordinate.

3. The operation © preserves all existing joins in the first coordinate, and re-
verses all existing joins to meets in the second coordinate. The latter means
that for any set B C A such that \/ B exists, \pcp(a © b) exists and we
have a & (\/pepb) = Npep(a ©b). In particular, & is order-preserving in
the first, and order-reversing in the second coordinate.

4. The operation @ is join-preserving in the second coordinate, i.e. the equation
a® (bVe)=(adb)V (adc)holds. Hence, by commutativity, & is join-
preserving in each coordinate.

5. The operation © is meet-preserving in the first coordinate, i.e. the equation
(anb)ec = (asc) A (bec) holds, and meet-reversing in the second
coordinate, ie.a & (bAc) = (a©b)V (a&c).
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6. The equation (a © b) A\ (b© a) = 0 holds.
7. The equation® (a A —a) V (b V —=b) = b\ —b holds.
8. The map —: A — A is an order-reversing bijection that is its own inverse.

Proof. Item 1 is [25, 1.1.4(iii)]. Items 2-3 are immediate consequences of the
adjunction in 1. Items 4-5 are proved as in [25, 1.1.6], mutatis mutandis. Item
6 is [25, 1.1.7]. For item 7, we need to show thata A =a < bV —b. By item 1,
wehavea < (a©b) @ band ~a < (b© a) @ —b, using the obvious equality
—a© —b = b S a. Using items 2 and 6, we now get

aN—a < ((acb)@b)A((boa)®-b) <[(acb)A(boa)]® (bV—b) =bV -b.
Item 8 is [25, 1.1.3 and 1.1.4(i)]. O

We write (X, T) for the Stone dual space of (the distributive lattice under-
lying) A. Recall that to any point x € X there corresponds a unique prime
lattice ideal I, of A, and the specialization order on X corresponds to the
inclusion order on ideals (cf. Example 2.1.6 in Chapter 2). We write Y C X
for the subset corresponding to the prime MV-ideals of A, and Z C Y for
the subset corresponding to the maximal MV-ideals of A. The following
holds in Y, though not in X:

Proposition 4.1.5 (Cf. [12, 10.1.11]). Ify,y' € Y,y £ v and y' & vy, then
there exist u,v € A suchthaty € i, y' € Dand u ANv = 0.

Proof. Picka € I,y \ Iyand b € I\ I,s. Defineu :=a©bandv:=boa. If
we had u € I, then, sincea < (a©b)®b = aV b, we would geta € I,
contradicting the choice of a. Therefore, u ¢ I, i.e. y € . The proof that
y' € U is similar. Since the equation (¢ © b) A (b ©a) = 0 holds in any
MV-algebra (Lemma 4.1.4.6), we have u Av = 0. O

As a consequence, we now show that the set of prime MV-ideals of A, or-
dered by inclusion, is a root system, i.e., the upset of any one of its elements is
totally ordered. This terminology first arose in the context of lattice-ordered
groups, cf. e.g. [12].

Corollary 4.1.6. For each y € Y, 1y is totally ordered by <. Moreover, every
prime MV-ideal is contained in a unique maximal MV-ideal.

Proof. Thisis [25,1.2.11(ii) and 1.2.12]. To prove the first assertion, lety € Y
and suppose that two distinct elements i,y € Y lie in 1y. Suppose fur-
ther, by way of contradiction, that i’ and y” are incomparable. By Proposi-
tion 4.1.5, there are u ¢ I,y and v ¢ I,» such that u Av = 0. But then u € I,

3This is the De Morgan-Kleene equation, see [4, Ch. XI].
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or v € I, since I is prime, contradicting either y <y ory < y”. The second
assertion now follows at once by a standard application of Zorn’s lemma to
the chain ty. O

Remark 4.1.7. Recall [134, Definition 4.3] that a bounded distributive lat-
tice D is normal if, whenever di,d, € D satisfy di Vdy, = 1, there exist
c1,¢2 € Dwith ¢y Acy =0suchthatc; Vdy =1and ¢ Vdy = 1. The lattice
D is normal if, and only if, every prime ideal of D is contained in a unique
maximal ideal of D. In this case, the space of maximal ideals with the Stone
topology is Hausdorff, and there is a continuous retraction of the Stone dual
space of D onto the subspace of maximal ideals [134, Theorem 4.4]. We will
show in Proposition 4.1.8 below that the space Y of prime MV-ideals of A
is the Stone dual space of the distributive lattice KCon A of principal MV-
congruences of A. In light of Corollary 4.1.6, it then follows that the lattice
KCon A is normal, and that the map m : Y — Z which sends a prime MV-
ideal to the unique maximal MV-ideal above it is continuous with respect
to the topology T+ on Y and Z. The root system property of (Y, <) (Corol-
lary 4.1.6) corresponds to the fact that KCon A is even completely normal; see
[27, and references therein]. O

There is a lattice homomorphism A: A — Con A from A to the lattice of
MV-congruences on A which sends an element a to the MV-congruence
A(a) generated by the pair (a,0), or, equivalently, to the principal MV-
ideal (a) C A. (Indeed, A clearly preserves 0 and 1; it preserves A and
V by Proposition 4.1.3.) The image of the homomorphism A is the lattice
KCon A of principal (or, equivalently, finitely generated or compact) MV-
congruences of A. Hence, writing ¢ for the kernel of A, there is an isomor-
phism of distributive lattices A/c = KCon A.

Proposition 4.1.8. For any MV-algebra A, the Priestley dual space of the dis-
tributive lattice A /o is homeomorphic to the closed subspace Y of the dual Priest-
ley space (X, TP, <) of A. Hence, (Y, V) is homeomorphic to the Stone dual space
of Aot

Proof. By Proposition 1.1.12, the Priestley dual space of A/c is homeomor-
phic to the closed subspace of X defined by

Se={xeX | VY(@b)eo:(ac+<bel)}

It thus suffices to show that S, = Y. Let x € X. Suppose first that x € Y,
i.e. I is an MV-ideal. If (a,b) € 0 and a € I, then b is in the MV-ideal

“There are several places in the literature on MV-algebras and lattice-ordered groups where
this result appears under various guises. The reference closest to the spirit of the present paper
is [24], where the authors interpret via Priestley duality Belluce’s results on the map A in [9].
Compare also [38, Definition 8.1, Proposition 8.2, and Corollary 8.9].
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generated by a, which is contained in I,. Hence, b € I,. The proof that
b € I implies a € I is symmetric. Hence, x € S,. Conversely, suppose
that x € S,. We show that I, is an MV-ideal. If a,b € I, thenaV b € I,
since I, is a lattice ideal. By Proposition 4.1.3 we have (a V b) = (a @ b), i.e.
(avbadb) € 0. Since x € S, we deduce a &b € I, as required. The
second statement now follows from Theorem 2.1.10 and Example 2.1.11.2.

O

Remark 4.1.9. The set of prime MV-ideals, Y, can also be directly topol-
ogized using the MV-ideals of A. The most common such topology on Y
is known as the spectral topology [121, Definition 4.14]: its open sets are the
sets of the form {y € Y | I Z I, } as I ranges over all MV-ideals of A. Note
that these sets are precisely unions of sets of the form 2N Y, where a ranges
over A. Hence, this topology is equal to the topology that is induced on
Y, viewed as a subspace of the Stone dual space of the distributive lattice
underlying A. The further restriction of the spectral topology to the set
of maximal MV-ideals, Z C Y, is traditionally called the hull-kernel topol-

0gy. O

Remark 4.1.10. MV-filters — upsets containing 1 and closed under

a®b = —(-a @ —b) — are dual to MV-ideals. Because MV-negation is
a dual order-automorphism of the underlying lattice of the MV-algebra A,
the map I — —I, where = := {—a | a € I}, is a bijection between the
lattice ideals and filters. It restricts to a bijection between prime or maximal
MV-ideals and prime or maximal MV-filters, respectively. Note, however,
that the bijection I —— I° between the prime filters and the prime ideals
of the underlying distributive lattice of A does not restrict to a bijection be-
tween prime MV-ideals and prime MV-filters. Indeed, if I is, say, a maximal
MV-ideal of A, then simple examples show that I is not in general an MV-
filter of A (though it is, of course, a prime filter of the underlying lattice).
Following tradition, we use MV-ideals rather than MV-filters in the sequel.
In particular, we stress that Y denotes the set of points y € X such that I,
is a prime MV-ideal; this is not the same as the set Y’ of points y € X such
that Fy is a prime MV-filter, even though the two are connected via the nat-
ural bijection — given above. Cf. the notation adopted at the beginning of
Section 4.3 below. O

4.2. Lifting operations and inequalities to the canonical ex-
tension

We refer to Section 1.2 in Chapter 1 for basic facts about canonical extension.
In this section, we collect the relevant facts about the lifting of operations
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and inequalities to the canonical extension. For further background we re-
fer the reader to [58, 61].
Recall that, for any distributive lattice D, the assignment

k: J°(D°) — M>®(D°) (4.2)
x —— \/{aeD|x£a}

defines an order isomorphism between the posets of completely join-
irreducible and completely meet-irreducible elements of the canonical ex-
tension D° [58, Theorem 2.3]. Both of these sets are order-isomorphic to
the poset underlying the Priestley dual space of D (cf. Example 1.2.5 in
Chapter 1). The bijection « has the useful property

Vue D, x€J®(D%) : x<u < utx(x). (4.3)

The set of filter elements of D° will be denoted by F(D?), and the set of ideal
elements will be denoted by I(D°). Note that, under the isomorphisms
(D°)* = (D")? and (D°)°P = (D°P)°, we have that F((D°)") = (F(D°))"
and F((D?)°P) 22 I(D?); order-dual statements hold for ideal elements (cf.
[58, pp. 19-20]).

Let f: D" — D be an order-preserving n-ary operation on a distributive
lattice D. For a filter element x of (D°)", let

f(x) == \{f(a) |x <aeD"}, (4.4)
and for an ideal element y of (D°)", let
fly) =\{f@)|y=aecD"}. (4.5)
Now, for u € (D?)", we define
fo(u) = \/{f(x) |u=xeF(D)"}, (4.6)
Fru) == N{Ff(y) |u <y e 1(D)"}. 4.7)

The operations (4.6-4.7) are called the o-extension and the rr-extension of f,
respectively.” Although both extensions restrict to f on filter and ideal ele-
ments of D?, they do not necessarily coincide.® The above is easily adapted
to operations which are order-reversing in some coordinates. If a function

5For a more general definition of o- and 7r-extensions that does not assume monotonicity
of f, see [58, Section 2.4].

6The operation @ of Chang’s non-simple totally ordered MV-algebra, for example, has dis-
tinct 0- and 7r-extensions; see [60, Proposition 1].
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g: D x D — D is, say, order-preserving in the first coordinate and order-
reversing in the second coordinate, then g acts as an order-preserving oper-
ation on D x D°P, so the preceding definitions apply up to the appropriate
order flips. Itis an important fact that residuated (=adjoint) pairs of oper-
ations lift to the canonical extension:”

Proposition 4.2.1. Let D be a distributive lattice, and suppose that f: D x D — D
and g: D x D°P — D are order-preserving operations such that

Va,b,ceD: f(a,b) <c <= a<g(cb).

Then:
Yu,v,we D°: fO(u,0) <w = u<g"(w,0).

Proof. We only prove that f7(u,v) < w = u < ¢g"(w,v), the other direc-
tion being similar. Let us write E := D x D x D°P, and define operations
p,s,t: E—= Dby

p(a,b,c):=a, s(ab,c):=g(cb),
t(a,b,c) :=0if f(a,b) <c, and t(a,b,c) :=1if f(a,b) £ c.

Observe that, using the assumption, the inequality p < sV t holds point-
wise on E. Therefore, p” < (s V t)° holds pointwise on E°. Note that ¢
is order-preserving (as a function from E to D), while s is order-reversing.
Hence, by [59, Lemma 5.11], we have (s V 1)7 < s™ V17, s0 p7 < s™ V7.
Now, it is not hard to see from the definitions of the extensions that, for
all u,v,w € D’, we have p’(u,v,w) = u, s"(u,v,w) = ¢"(w,v), and
t7(u,v,w) = 0if f7(u,v) < w. In particular, if f7(u,v) < w, then we
get

u=yp’(uo,w) < (V") (uow)=g" (w,v)Vv0=g"(w0). O

Equally important will be that certain inequalities also lift to the canonical
extension. By a binary dual operator we mean a binary operation on D which
preserves finite meets in both coordinates. The following proposition is a
special case of [56, Theorem 4.6], where the result is proved for operations
which in each coordinate preserve either finite joins or finite meets.

Proposition 4.2.2. Let s and t be terms in the language of distributive lattices
with an additional binary function symbol f. For any distributive lattice D, and
for any binary dual operator fP on D, if (D, fP) satisfies the inequality s < t then
so does (D?, (fP)7™).

"This was first proved, in the distributive case, by B. Jénsson during early work in 1996 on
the paper [58]. Here we give a new proof based on a general method from [59]. See also [51,
Proposition 2] for a different proof, in the context of Heyting algebras.
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4.3. The structure of the lattice spectrum of an MV-algebra

In this section and the next we examine the structure of the lattice spec-
trum of an MV-algebra. In particular, we show that the operations ¢ and
— of an MV-algebra yield dual operations on the lattice spectrum which
make it into a topological partial commutative semigroup with an involu-
tion (Propositions 4.3.7 and 4.3.1).

Notation. In the remainder of this chapter, we adopt the following conven-
tions.

e A denotes an MV-algebra, and its bounded distributive lattice reduct.
It will be clear from the context which is meant.

e X denotes the set of points of the dual space of A. To each point x € X
there is associated a prime ideal I, and a prime filter F,.

e Y C X denotes the set of points y € X such that [, is a prime MV-ideal
of A.

e Z C Y denotes the set of points z € Y such that I, is a maximal MV-
ideal of A.

o The partial order < on X and on its subsets Y and Z is the inclusion
order of the corresponding ideals.

e 7t is the Stone topology on X, ' is its co-compact dual, and 7* is the
Priestley topology on X. The restrictions of these topologies to Y and
Z are denoted by the same symbols. O

Recall from Remark 4.1.10 that the map which sends a (prime) MV-ideal I
to the (prime) MV-filter —I is a bijection. Note that, in terms of canonical
extensions, this map is the unique extension (—) = (—)” of the operation
. For x € X, we define i: X — X by declaring i(x) to be the unique
element of X with

Ljxy = —Fx, or equivalently, F; ;) = —1lx. (4.8)

Observe that the subspace Y is not stable under the operation i: fory € Y,
Ii(y) is the complement of the prime MV-filter —I,, which is a prime ideal,
but not necessarily an MV-ideal.

Proposition 4.3.1. The map i: X — X is an order-reversing homeomorphism of
the Priestley space (X, TF, <) which is its own inverse. Moreover, for all x € X,
either x < i(x)ori(x) < x.
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Proof. Both assertions follows at once from Priestley duality, using items (8)
and (7) in Lemma 4.1.4, respectively. See also [59, 6.3.4]. O

Next consider the lift @ of the operation @ to ideal elements of A°, as in
(4.5). We have:

(\/1) & (\/]) =\{a@blacLbe}=\/{c|JacLbe]:c<adb}.
Hence we define @ onidealsI,] C A as follows:®
I@]:={c€A|Jaelbe]suchthatc <adb}. 4.9)

Similarly, we lift © to filter elements of A x A°P. For F a lattice filter and I
a lattice ideal of A, define the lattice filter

FSl:={ce A|3aecF,belsuchthatc>a6b}. (4.10)

Remark 4.3.2. Let us emphasize that the operations @ and & in (4.9) and
(4.10) agree with the lifted operations @ and © on filter and ideal elements
of the canonical extension, defined in the preceding Section 4.2, upon using
the isomorphisms between the filter elements with lattice filters and the
ideal elements with lattice ideals [54, Lemma 3.2]. Hence we can apply the
methods from Section 4.2 and the papers [61, 62] to & and &, as we will
now do. O

Proposition 4.3.3. Let I and | be ideals of the MV-algebra A, and let F be a filter
of A.

1. The ideal I & ] is generated by the elements a @ b, fora € Iand b € |.

2. The operation & is commutative, associative, and has the ideal {0} as a
neutral element.

3. The operation @ is monotone: if ] C ', then [&] C I D]

4. Theideal I & J contains 1 if, and only if, there exists a € I such that —a € ].
5. The ideal I is an MV-ideal if, and only if, &1 C I.

6. The set F S I is a filter, and

FEIC] < FC(BI)".

8 An operation which is essentially the restriction of (4.9) to prime ideals was considered in
the context of Wajsberg algebras in [115].
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Proof. The second item is a consequence of Proposition 4.2.2, noting that &
is a binary dual operator by Lemma 4.1.4.2. Items 1, 3, 4, and 5 are imme-
diate from the definitions. For item 6, apply Proposition 4.2.1 to the oper-
ations f := © and g := @, which form an adjoint pair by Lemma 4.1.4.1.
Then:

(A5 (V1) <V = AF< (V)5 (V)

Since A F < \/ Iif, and only if, F NI # @ by the compactness property of
canonical extensions, a straightforward rewriting completes the proof. [

The following proposition is central to the paper [61]; cf. Lemma 4.3 and
Theorem 4.4 therein.

Proposition 4.3.4. Let A be an MV-algebra. The following hold:
1. For x € M*®(A?), y € I(A?), we have x By € M®(A°) U {1}.
2. Forj € J®(A%), x € M®(A?), we have j© x € J*(A%) U {0}.

Proof. Adopting the terminology of [61], say that an operationh: Ax A — A
is a double operator if it preserves binary joins and binary meets in each coor-
dinate. By Lemma 4.1.4, ®: AX A -+ Aand ©: A X A°® — A are double
operators. For the first item, set h(a,b) := b & a. Then h(a,0) = 0 for
all a € A. Writing C := A, the right upper adjoint of 1’ is the opera-
tion I: C x C — C, which sends (u#,v) to v &™ u, by Proposition 4.2.1. By
the proof of [61, Theorem 4.4], we get in particular that / maps an element
(y,x) € F(C°P) x M®(C) = I(C) x M®(C) into M*(C) U {1}, so that in-
deed I(y,x) = x @™y is in M®(A®) U {1}, as required. The proof of the
second item is dual, and uses that @ is a double operator, to which © is a
lower adjoint (Lemma 4.1.4). O

Corollary 4.3.5. Let x € X and let | be an ideal of A. Then I & ] is a prime ideal
of Aif, and only if, Iy, 2 ]. In particular, given x,y € X, the ideal I & I of A
is prime if, and only if, i(x) > y.

Proof. By Proposition 4.3.4, if 1 ¢ I, @], then I, ® ] is a prime ideal. By
Proposition 4.3.3.4, we have 1 ¢ I, @ ] if, and only if, there isno a € I, such
that —a € | if, and only if, -1, C J°. This is equivalent to I,-(x) D | by the
definition (4.8) of i(x). O

We now define a partial binary operation + on X with domain
dom(+) := {(x,y) € X*[i(x) 2y} = {(x,y) € X} |1 £ L DL}
For (x,y) € dom(+), we let x + y be the unique element of X such that
Liyy = L@ L. (4.11)
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Remark 4.3.6. We observe in passing that the dual i: X — X of negation
as in (4.8) is definable from +: dom(+4) — X. Indeed, one has

i(x) =max{y € X| (x,y) € dom(+)}.

Strictly speaking, therefore, carrying along the structure i: X — X on the
dual space is not necessary.

Importantly, we obtain:

Proposition 4.3.7 (Dual structure). The structure (X,t',+) is a topological
partial commutative semigroup that is translation-invariant with respect to the
specialization order, and whose set of idempotent elements is the MV-spectrum Y
of A. More precisely, for all x,x',x" € X, the following hold.

1. (Commutativity.) If x + x' is defined, then x' + x is defined, and
x+x =x"+x.

2. (Associativity.) If x + x" and (x + x") + x" are defined, then x + (x' + x"")
is defined, and (x + x') + x"" = x + (x' + ).

3. (Translation-invariance.) If x’ < x” and x + x' is defined, then x + x' is
defined, and x + x" < x + x"".

4. (Idempotents are Priestley-closed.) The ideal I is a prime MV-ideal if,
and only if, x + x is defined and x + x = x. Hence

Y={yeX]|(yy) €dom(+)andy +y <y}
={y€X|(yy) € dom(+)andy +y =y},

and Y is closed in (X, TF).

5. (Continuity.) The function + : dom(+) — X is continuous with re-
spect to the topology T' on X and the topology that dom(+) inherits from
(X, x (X, ).

6. (Closed domain.) The set dom(+) C X2 is closed in (X, ") x (X, 1).

Proof. The first three items follow directly from Proposition 4.3.3. For item
4, suppose Iy is a prime MV-ideal. Then I, & I, C I, by Proposition 4.3.3.5,
so in particular x + x is defined. It follows that x + x < x. On the other
hand, x < x 4+ x always holds since I, = I, &0 C I, ® I, by Proposi-
tion 4.3.3. Thus we infer x + x = x. The converse direction is clear from
Proposition 4.3.3.5. The fact that Y is closed in (X, 77) was proved in Propo-
sition4.1.8. For item 5, pick @ € A. Note that, for (x,x") € dom(+), we have
a € I, if, and only if, there exist b € Iy and c € I» such thata < b®c, so

+71(@°) = dom(+) OU{EC XC|bceAra<bdcl,
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which is clearly open in dom(+). For the last item, note that < is a closed
subset of (X, 7+) x (X,1'), because (X, 1, <) is a Priestley space. Since i
is an order-reversing continuous function by Proposition 4.3.1, dom(+) is
equal to {(x,y) | i(x) >y}, which is closed in (X, ") x (X, 7"). O

Notation. Henceforth, given x,x’,x"” € X, wewritex +x' = x”,x’ < x'+x”,
and so forth, to mean ‘both sides of the (in)equality are defined, and the
(in)equality holds’.

4.4. The decomposition of the lattice spectrum: the map k

In this section we construct the map k: Y — X that is central to our results,
and establish some of its order-topological properties, which naturally arise
here (and, implicitly, in [61]) from the canonical extension of an MV-algebra.
In particular, we obtain a decomposition of X into simple fibres in Propo-
sition 4.4.5, and we prove an ‘interpolation lemma’, Lemma 4.4.9, that will
be crucial in our applications.

As a particular instance of Priestley duality, MV-algebraic quotients of A
correspond to closed subspaces of the Priestley dual space X. The operation
@ may be used to characterize the closed subspace dual to such a quotient,
as follows.

Proposition 4.4.1. Let | be an MV-ideal. The lattice spectrum of the quotient
MV-algebra A/ ] is homeomorphic to the Priestley-closed subspace of X defined by

Sj={xeX|L®JC L}

Moreover, if | = 1, for somey € Y, then S;, = {x € X | x +y < x} is totally
ordered.

Proof. Let us write ¢} for the MV-congruence on A which is the kernel of
A — A/]; recall that (a,b) € 9} if, and only if, (a ©b) V (b©a) € ]. Since
A/ ] isin particular a lattice quotient of A, we may apply Proposition 1.1.12:
the lattice spectrum of A /] is homeomorphic to the closed subspace

S;={xeX|V(ab)ct:(aclbecl)}

with the subspace topology and the restricted order. A short argument,
using the definition of ¢}, shows that x € Sj if, and only if, for all (a,b)
such thata©b € |, b € I, implies a € I,. Rewriting this condition using
the definition of & (4.10), it is equivalent to Fy &I, C J°. This, in turn,
is equivalent to Fy C (J @ I)¢, by Proposition 4.3.3.6. From this chain of
equivalences, we conclude that x € Sy if, and only if, I, © ] C I,. To prove
the second assertion, recall from Proposition 4.1.2 that if | = I, is prime,
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then A/ Iy is totally ordered. Hence, S I, is also totally ordered, because by
a standard exercise the prime ideals of a chain form a chain. The fact that
Si, = {x € X| x +y < x} is immediate from the definition of +. O

Notation. Henceforth, if y € Y, we write C;, = {x € X | x +y < x} for the
chain S I, C X.

Our next aim is to show that, for a fixed x € X, there exists a maximum ele-
ment y € Y such that x +y < x; this will lead us to the definition of a map
k: X — Y (Definition 4.4.4). We prove this through canonical extensions,
using the bijection x: J*(A?%) — M®(A°) defined in (4.2).

Lemma 4.4.2. Forany x € M®(A?®), the set
{uec A | x@™u<x}
is closed under ©, and has a maximum, which is given by k (k1 (x) © x) € M®(A°).

Proof. To see that the set is closed under @7, notice that if u, v are in the set,
then
2T (ud™v)=(xd"u) T v <xP"v < x,

using that &7 is associative, by Proposition 4.2.2. Let j := x ! (x) € J®(A?).
By Proposition 4.3.4.2, & x € J*®(A%) U {0}. To obtain a contradiction, sup-
pose that j© x = 0 in A°. Then, by adjunction (Lemma 4.1.4 and Proposi-
tion 4.2.1), we would conclude j < x ®0 = x = x(j), which contradicts the
definition of x(j). So j © x € J®(A°). Note that, for any u € A°,

x@Tu<x <= jLxd"u (using (4.3) and x = «(j))
— joxLu (Proposition 4.2.1)
<— u<x(jSx) (using (4.3)).

Therefore, the maximum of the set {u € A° | x @7 u < x} is x(j © x), which
is indeed an element of M*(A?). O

Proposition 4.4.3. (i) Forany x € X, there exists a largest ideal | of A such that
L ® ] C I, namely, the prime ideal (F, © I)¢. (i) Forany x € X, (Fx© L;)*
is in fact a prime MV-ideal.

Proof. (i) Write k(x) := x(x~!(x) ©x). By Lemma 4.4.2, the largest such
ideal is I(), which is indeed equal to (Fx © Iy)°. (ii) By Proposition 4.4.2,
the set of elements u such that x ™ u < x is closed under @”. In particular,
k(x) + k(x) is in this set, so k(x) + k(x) < k(x). It now follows that Iy, is
an MV-ideal by Propostion 4.3.7. O
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Definition 4.4.4. Inlight of Proposition 4.4.3, we define a functionk: X — Y
by letting k(x) € Y be such that Ij,) is the largest prime MV-ideal of A sat-

isfying I, © | C I; equivalently, k(x) := x(x 1 (x) S x).
The fibres of the map k: X — Y decompose X in a simple manner.
Proposition 4.4.5 (Decomposition by k). Foranyy € Y, we havek™!(ty) = Cy.

Proof. Lety € Y. For any x € X, we have k(x) > yif, and only if, x +y < x
if, and only if, x € Cy, by definition of C,,. O

Proposition 4.4.6. The map k : X — Y has the following topological properties.
1. For x € X, we have

Liy={acA|Vce A:(coa€ly »c€ L)}

2. The set k=1(a) is open in (X, TP) for any a € A.
3. The map k: (X,tP) — (Y, T%) is a continuous function.

Proof. For (1), recall that k(x) = x(x~!(x) © x), when x is regarded as an
element of M*(A?). Therefore,

— x Y(x)Bx<a (using (4.3))

— x (x)Ba<x *)

= (coa) <x (def. of © on F(A%))
x—1(x)<c

— Jce A :xx)<candcoa<x (x € M™)

< dceA:cé¢lyandcea€l,

where the equivalence marked (*) follows easily from the adjunction be-
tween © and @ (Lemma 4.1.4.1 and Proposition 4.2.1), and the fact that
@ is commutative. From the above chain of equivalences, (1) is clear. For
(2), note that (1) says that a € Iy, if, and only if, x € ﬂceA(C/S\a uce).
Therefore,
K@) = ) (@@aue),
ceA

which is closed in (X, 77). (3) is immediate from the definition of the topol-
ogy T+. O
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Remark 4.4.7. Proposition 4.4.6.1 shows that our function k is the same
as the function K defined in [25, Theorem 6.1.3], where it is attributed to
the PhD thesis of N. G. Martinez, also see [117]. Moreover, by Proposi-
tion 4.4.6.2, the set k~1(@°) is closed for any a € A. By Proposition 1.1.12,
this set corresponds to a lattice quotient A — A, of A. A straight-forward
argument using the definition of k shows that this quotient A — A, coin-
cides with the MV-algebraic quotient of A by the principal MV-ideal (a).

O

We now prove that the fixed points of the map k are exactly the points of X
corresponding to prime MV-ideals. That is, k is a retract of X onto Y.

Proposition 4.4.8. Let x € X. Then x € Y if, and only if, k(x) = x.

Proof. For the non-trivial implication, recall from Proposition 4.3.7.4 that if
x € Y, then x + x is defined and x + x = x. In particular, by definition of
k(x), we have x < k(x). On the other hand, using translation-invariance of
+ (Proposition 4.3.7.3), we get that k(x) = 0+ k(x) < x +k(x) < x. We
conclude that x = k(x). O

Finally, we show how the map k relates to the order of the space X. This
will be of crucial importance in our applications.

Lemma 4.4.9 (Interpolation Lemma). Let x,x" € X be such that x < x'. There
exists X" € X such that x < x" < x/, k(x") > k(x) and k(x"") > k(x').

Proof. We use the properties of + established in Proposition 4.3.7. Define
x" = x4 k(x'). Note that x” is well-defined, because k(x') < i(x") <i(x).
Clearly, x < x”, by monotonicity of +. Also, x” = x +k(x') < x' +k(x") < x'.
To show that k(x) < k(x""), it suffices to show that x” + k(x) = x”, by defi-
nition of k(x”). We calculate:

X" +k(x) = x +k(x") + k(x)

Similarly, to show that k(x") < k(x"), we prove that x”/ + k(x') = x":
X"+ k(x) = x +k(x") +k(x)
=x+k(x") =x". ]
4.5. Kaplansky’s Theorem for MV-algebras: the map m

Kaplansky [89] proved that for any compact Hausdorff space S the dis-
tributive lattice order on the set of real-valued continuous functions, C(S),
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uniquely determines the space S (up to homeomorphism). He also re-
marked on how to obtain the analogous result for the lattice of continu-
ous functions with co-domain the unit interval [0,1] € R. Kaplansky’s
result should be compared with the standard Stone-Gelfand-Kolmogorov
theorem that the unital commutative ring structure of C(S) determines S;
see e.g. [68, Theorem 4.9]. The set C(S,[0,1]) of all [0,1]-valued contin-
uous functions on S is naturally an MV-algebra, with operations defined
pointwise from the standard MV-algebra [0,1]. As an application of The-
orem 4.5.5 below, we prove (Corollary 4.5.6) that the underlying lattice or-
der of any separating MV-subalgebra of C(S, [0, 1]) uniquely determines the
space S.

By Corollary 4.1.6, there is a uniquely determined function

m:Y —Z 4.12)

that sends each prime MV-ideal to the unique maximal MV-ideal that con-
tains it. By Remark 4.1.7, m is continuous with respect to the topologies T+
on Y and Z. We now study the composite function m ok : X — Z. Define a
binary relation W on X by setting

x1Wx, <= there exist x}, x5, xg € X such that x] < x1, x5 < x5, x9 > x}, 5.
(4.13)

The picture below depicts the typical order configuration for which x; Wx;.
The reason for our choice of the notation ‘W’ for this relation should be clear
from the picture.

X1 X2

Xq

!/ !
X1 X

Lemma 4.5.1. Let x,x’ € X be such that x < x'. Then m(k(x)) = m(k(x")).

Proof. By the interpolation lemma (Lemma 4.4.9), there is y := k(x”) € Y
such that y > k(x) and y > k(x"). The maximal MV-ideal above y is above
both k(x) and k(x"). Hence, m(k(x)) = m(k(x")), as there is a unique maxi-
mal ideal above k(x) and k(x'). O

Lemma 4.5.2. Forany x1,xp € X, x1Wxy if, and only if, m(k(x1)) = m(k(x2)).
In other words, W = ker (m o k).
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Proof. Suppose x1Wx;. Pick x’l,xé, X9 € X as in the definition of W. Re-
peated applications of Lemma 4.5.1 yield

m(k(x1)) = m(k(x})) = m(k(x0)) = m(k(x5)) = m(k(x2)).

Conversely, suppose m(k(x1)) = m(k(x2)). Then x; > k(x;) =: x/, and
we also have xg := m(k(x1)) = m(k(xz)) > k(x;) fori = 1,2. Hence,
x1Wxsp. O

Let us write [x] for the equivalence class of x € X under W, X/W for the
quotient set, and
g: X — X/W

for the natural quotient map x +— [x]y. Since W = ker(m o k) by Lemma
4.5.2, there is a unique (set-theoretic) function f: X/W — Z making the
diagram

Xx—1 L xw
ok f (4.14)
Z L

commute, and this function f is a bijection.
Lemma 4.5.3. The map mok: (X,t+) — (Z, V) is continuous.

Proof. By Proposition 4.4.6, k: (X,t7) — (Y, tt) is continuous, and by Re-
mark 4.1.7, m: (Y, t+) — (Z,7}) is continuous, so m o k: (X, 77) — (Z, 1)
is continuous. Now note that, by Lemma 4.5.1, for any subset T C Z,
(m o k)~Y(T) is both an upset and a downset in (X, <). In particular, for
any open set U in (Z, %), we get that (m o k) =1 (U) is an open downset in
(X, 17, <), and therefore it is open in (X, T+).° O

Proposition 4.5.4. Let o denote the quotient topology that X /W inherits from
(X, ). Then the unique function f: (X/W,co) — (Z, ") making (4.14) com-
mute is a homeomorphism.

Proof. Note that f is continuous by Lemma 4.5.3, the fact that (4.14) com-
mutes, and the definition of the quotient topology. Asq: (X, +) — (X/W,0)
is continuous and onto, the space (X/W, ) is compact because (X, T+) is.
Recall that (Z, T+) is a Hausdorff space. So f is a continuous bijection from
a compact space to a Hausdorff space, and therefore f is a homeomor-
phism. O

Note that (1 0 k)~!(U) is also open in 7T, so that the function m o k remains continuous
when we put the stronger topology T+ N 1 on X, but we will not need this in what follows.
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We are ready to establish the MV-algebraic generalization of Kaplansky’s
Theorem.

Theorem 4.5.5 (MV-algebraic Kaplansky's Theorem). MV-algebras with iso-
morphic underlying lattices have homeomorphic maximal MV-spectra, i.e. collec-
tions of maximal MV-ideals equipped with the spectral topology T+.

Proof. Tt suffices to show that we can recover (Z, t+) from (X, t+) only, up
to homeomorphism. This is precisely the content of Proposition 4.5.4, upon
noting that (4.13) defines the relation W in terms of the specialization order
of (X, 74). O

For any compact Hausdorff space S, let C(S, [0,1]) denote the MV-algebra
of all continuous [0, 1]-valued functions on S, where [0, 1] is endowed with
its standard (Euclidean) topology, and the operations are defined pointwise
from the standard MV-algebra [0,1]. A subset B C C(S,]0,1]) is said to
separate the points of S if for each p # g € S thereis b € B with b(p) = 0,
b(g) > 0. We can now obtain (a stronger version of) [89, Theorem 1 and §6].

Corollary 4.5.6 (Kaplansky's Theorem). Let Sy, Sy be any two compact Haus-
dorff spaces. (i) Suppose A; C C(S;,[0,1]) is an MV-subalgebra that separates
the points of S;, i = 1,2. If A1 and A, are isomorphic as lattices, then S and S
are homeomorphic. (ii) The lattices C(S1, [0,1]) and C(Sy, [0,1]) are isomorphic
if, and only if, the spaces S and Sy are homeomorphic.

Proof. (i) Let Z; denote the maximal MV-spectrum of A;, i = 1,2, equipped
with the spectral topology T+. Since A; separates the points of S;, by [25,
3.4.3] it follows that S; is homeomorphic to Z;, i = 1,2. By assumption, the
lattice reducts of A; and A; are isomorphic. By Theorem 4.5.5, Z; and Z,
are homeomorphic. So S; is homeomorphic to S,. (ii) For the non-trivial
implication, write A; for the MV-algebra C(S;,[0,1]), i = 1,2. Now S; is
compact Hausdorff by hypothesis, and therefore by Urysohn’s Lemma the
elements of A; separate the points of S;. By [25, 3.4.3] it follows that S;
is homeomorphic to the maximal MV-spectrum of A; (i = 1,2) with the
spectral topology. Apply (i). O

Theorem 4.5.5 does not extend without substantial modifications to prime
MV-spectra, as the following example shows.

Example 4.5.7. For readers familiar with /-groups, the MV-algebra that we
will consider in this example is the unit interval of (QXQ, (1,1) ), where
QXQ denotes, as usual, the lexicographic product of the ordered additive
abelian group Q of rational numbers with itself.

Consider the subalgebra Q = [0,1] N Q of the standard MV-algebra [0, 1].
Totally order the set-theoretic Cartesian product Q x Q lexicographically.
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That is, define (a,b) =< (a’,V'), for a,b,a’,b/ € Q, to mean a < a/, or
else s = a/, and then b < V. Next, define the operation & on Q x Q by
setting (a,b) ® (a/,V') := min{(a+4a’,b+1'),(1,1)}, where the minimum
is taken with respect to <. Further define a unary operation = on Q by
—(a,b) := (1 —a,1—0). Itis straightforward to check that Q x Q is an MV-
algebra under the binary operation ©, the unary operation —, and the con-
stant (0,0). A further verification shows that the underlying order of this
MV-algebra coincides with the restriction of < to Q x Q. Hence Q x Q is
a totally ordered MV-algebra whose underlying lattice is a dense countable
chain with endpoints. But any two such chains are order-isomorphic [131,
2.9], and so the MV-algebras Q x Q and Q have isomorphic underlying lat-
tices. Now direct inspection shows that Q is non-trivial and simple (=it has
no non-trivial congruences) and therefore its prime MV-spectrum is the sin-
gleton {0}; whereas Q x Q has a unique non-maximal prime MV-ideal —
namely, the MV-ideal {(0,0)}, which lies below the unique maximal MV-
ideal {(0,9) | g € Q} — whence its MV-spectrum is a doubleton. O

4.6. Sheaf representations from k and m

We now combine the theory developed in Chapter 3 with the specific in-
formation about dual spaces of MV-algebras obtained in Section 4.4. This
leads to the two known sheaf representations of MV-algebras discussed in
the introduction to this chapter; one over the space of prime MV-ideals, the
other over the space of maximal MV-ideals. We will first use the map k,
defined in Definition 4.4.4. By Proposition 3.3.6, it suffices to show that k is
a B-patching decomposition for some basis B. We now exhibit such a basis.

Proposition 4.6.1. Let B be the basis {a“NY | a € A} for (Y, t"). The function
k: X — Y is a B-patching decomposition over (Y, T4) = (Y, t1)°.

Proof. Recall from Section 2.1 in Chapter 2 that the space (Y, Tt) is indeed
the co-compact dual of (Y, 7). The map k : X — Y is continuous from
(X,7P) to (Y, T+) by Proposition 4.4.6. It remains to prove that k satisfies the
property (Py;) in Definition 3.3.4 for any U € B. Notice that, since (Y, t")
is a spectral space and the sets in B are compact, it suffices to consider fi-
nite covers by compact-open sets. Also observe that, for any U € B, the set
k=1(U) is closed in X by Proposition 4.4.6.2. By Priestley duality, a clopen
downset of a closed subspace C of X can always be written as the inter-
section of C and a clopen downset of X (cf. Prop. 1.1.12 or [36, Exercise
11.12(i)]). Combining these observations, in this case it suffices to prove the
following property for any U € B.

(P;) Suppose that (U;)", is a finite collection of compact-open sets in
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(Y,7") such that U = U/, U; and that (D;)", is a collection of
clopen downsets in X such that, foralli,j € {1,...,n},

D; ﬂk’l(ui N U]) = D]' ﬂk’l(ui N U])

Then the set D := U, (D; Nk~1(U;)) is a clopen downset in the sub-
space k~1(U).

Let (U;)!, and (D;)"_, be finite collections as in (P[;). We need to show
that the set D := J"_;(D; Nk~!(U;)) is a clopen downset in the subspace
k=1(U). By Proposition 4.4.6, k=1 (Ul;) is closed for each i. Since each D; is
closed, it now follows that D is closed. To show that D is open in k=1 (U),
we will prove that

n
KA D = (D) ki (W), *)
i=1

where the right-hand-side in (x) is again clearly closed in X. To prove (x),
notice that the assumption on the sets D; implies that, if x is in D; Nk~ (U;)
for some i, then x € D; for all j such that x € k’l(U]-). The equality (x) now
easily follows from the fact that the sets k=1 (U;) cover k= (U). Finally, we
show that D is a downset in k=1 (U). Suppose that x’ € K and x < x’ for
some x € k~!(U). We prove that x € D. Since x’ € D, picki € {1,...,n}
such that ' € D; Nk~!(U;), and since the U;’s cover U, pick j € {1,...,n}
such thatk(x) € U;. By the interpolation lemma (Lemma 4.4.9), pick x”" € X
such that x < x” < &/, k(x”) > k(x) and k(x”") > k(x’). Then x" € D;
since D; is a downset. Also, since k(x’) € Uj; by the choice of i, we get
k(x") € U; because U; is an upset, and similarly, we get k(x") € U; because
k(x) is in the upset U;. Hence, x” € D; N k™! (U; N U;), which is equal to
D;n kKN (u; N U;) by the assumption on the D;’s. Since D; is a downset we
get that x € Dj, so x € Dj Nk~ (U;), which implies that x € D. O

As in Section 3.3 in Chapter 3, we associate to k an étalemap p : Ex — (Y, 1)
and, hence, a sheaf F; of distributive lattices over the space (Y, TT). By
definition, the stalk of the sheaf F; at y € Y is the quotient of A corre-
sponding to the subspace k~1(1y).!? Recall from Proposition 4.4.5 that
k~1(ty) = Cy, and by Proposition 4.4.1 the algebra corresponding to the
subspace Cy is A/ I;. Hence, the stalk of Fy at a point y is the MV-algebraic
quotient A/ I,. In particular, Fj is a sheaf of MV-algebras. Note that F is ex-
actly the sheaf used by Yang in [142, Chapter 5] and by Dubuc and Poveda
in [38, 2.1]. Thus, combining Proposition 3.3.6 in Chapter 3 with Proposi-
tion 4.6.1 above, we conclude the following.

01ndeed, note that, according to the definitions in Section 3.3, we have to use the specializa-
tion order of (Y, t"), which is the dual of the order < on prime ideals.
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Corollary 4.6.2 ([142, Proposition 5.1.2 and Remark 5.3.11] and [38, Theorem
3.12]). Any MV-algebra is isomorphic to the MV-algebra of global sections of the
sheaf over (Y,T!) whose stalk at y € Y is the quotient by the prime MV-ideal
L. O
Y

By Remark 4.4.7 and Proposition 3.2.9.2, the algebra of local sections over
a basic open set 2° N'Y is the dual of k~!(a°); this is simply the quotient of
A by the principal MV-ideal generated by a. In particular, the sheaf Fj is
flasque on the basis B defined in Proposition 4.6.1.

We digress to compare our Proposition 4.6.1 to results in the literature.
The following purely algebraic statement easily follows from the proof of
Proposition 4.6.1 using duality.

Corollary 4.6.3 (Chinese Remainder Theorem for principal ideals). Let Iy, ..., I,
be finitely many principal MV-ideals of the MV-algebra A satisfying Nj_, I; = {0},
and let ay,...,a, € A be such that

a;=a; mod [; ®[;
foralli,j=1,...,n. Then there exists a unique b € A such that
b=a mod I
foreachl =1,...,n.

Sketch of Proof. Principal MV-ideals correspond to compact open subsets of
(Y,t!), by Proposition 4.1.8 and the fact that (Y,t") = (Y,7+)?. Hence,
(I)]_, yields a family (U;)}"_; of compact open subsets. Since (j_; I = {0},
the family (U;)}"_; covers Y. The condition on (a;)]'_; says that their corre-
sponding clopen downsets (D;)}'_; in the Priestley space (X, 77, <) satisfy
the assumption of (P[;) in the proof of Proposition 4.6.1. The proof of Propo-
sition 4.6.1 now yields the desired b via its dual clopen downset D. O

In [45, Theorem 2.6] (cf. also [39, Lemma 1]), the authors prove a general
Chinese Remainder Theorem for MV-algebras, where the restriction to prin-
cipal ideals is not necessary. In the case of principal ideals, the proof ex-
hibits a specific MV-algebraic expression for b in the elements (a;);"_; and
(u1)]_,, whenever the u;’s are elements of A that generate the principal MV-
ideals (I;)]'_,, i.e. satisfy U; = iif for each I = 1,...,n. We will obtain such
a stronger version in Corollary 4.6.5 below. We further observe that Dubuc
and Poveda’s Pullback-Pushout Lemma [38, 3.11], a key ingredient in their
proof of the sheaf representation, is an easy consequence of the Chinese
Remainder Theorem. In the work of Filipoiu and Georgescu on sheaf rep-
resentations over the maximal MV-spectrum [46], the Chinese Remainder
Theorem does not feature explicitly, though its implicit role is clear e.g. in
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[46, Proposition 2.16]. In the literature on lattice-groups, already Keimel
proved a Chinese Remainder Theorem [12, 10.6.3] in developing his sheaf
representation; and Yang [142, Proposition 5.1.2] applies it to establish the
sheaf representation via the co-compact dual of the spectral topology. It ap-
pears that Keimel’s standard result, whose proof admits a straightforward
translation in the language of MV-algebras, went unnoticed in much of the
MV-algebraic literature. Indeed, [46], [38] and [39] do not refer to it. Finally,
let us point out that sheaf representations and Chinese Remainder Theo-
rems were studied at the level of universal algebra by Vaggione in [140],
whose results extend the previous treatment by Krauss and Clark [95]; see
also the earlier papers [141, 31] in the same direction.

In the proof of Proposition 4.6.1, we showed that the set D defined there was
a clopen downset. Therefore, it must be of the form bfora unique b € A by
Priestley duality. In Corollary 4.6.5, we will exhibit an explicit MV-algebraic
term for b. For this, we need one additional lemma concerning the map k.

Lemma 4.6.4. Foranya,u € A, we have

acmu Canlk1(ic).
0

ANkl (@e) c

T

Proof. For the first inclusion, suppose that x € @M k~1(i¢). We show by
induction on m that x € a© mu for all m > 0. For m = 0, we have
X € 4@ by assumption. Suppose that x € a © mu for some m. We show
that x € a 9(/m:1)u. Since x € k~!(i), we have u € Ii(x)- There-
fore, by Proposition 4.4.6 and the assumption that a © mu ¢ I, we get
(@aemu)cu ¢ I,. Now, since (aemu)cu < ac (m+1)u, we also
have a © (m + 1)u ¢ I, as required. For the second inclusion, suppose
that x € N5, a o mu. Putting m = 0, it is clear that x € @. To show that

x € Lk~1(@°), let
¥ i=x® <\/ mu).
m>0

By Proposition 4.3.4.1, we have either x’ € M® or x’ = 1. If x’ = 1, then
in particular 4 < x’. Compactness of the canonical extension yields m > 0
such that 2 < x @ mu. By adjunction, a © mu < x, which is impossible by
assumption. We therefore conclude that x’ € M®, and clearly x < x’. To
show that x’ € k~1(i¢), note that

Y Bu=x® (\/ mu) Du=xd (\/(m—i—l)u) <,

m>0 m>0

so u < k(x'), by definition of k(x'). O
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In the next corollary we write [a], to denote the congruence class of 2 € A
modulo [, in the quotient MV-algebra A/I,,.

Corollary 4.6.5 (Term-definability). Let (u;)", and let (a;)!"_; be two finite col-

lections of elements of A such that (iif )", covers Y, and the a; are compatible with
this cover, i.e.,
Forally €Y, ify € i N, then [a;ly = [aj]y.

There exists an integer t > 0 such that, setting

<=

b:.= (al- © i‘u,') ’

i=1

we have [b], = [a;]y forally € f NY.

Proof. By Proposition 4.6.1, D := U, (@; Nk~ 1(iif)) is a clopen downset
in Y. Fixi € {1,...,n}. Then @ N k' (@f) C D, s0 Nyen @ © mu; € D
by Lemma 4.6.4. Note that, for m < m’, we have a; © m'u; < a; © mu; us-
ing Lemma 4.1.4. Therefore, (a@ui)meN is a decreasing chain of closed
sets in T”. Since D is compact and it contains the full intersection of this
chain, there exists t; > 0 such that a@i C D. Choosing such ¢; for each
i€{l,...,n}and setting t := max{t; | i =1,...,n}, we now have

n n "
pcl < N az-/e?ul) c U (a6tu) €U (nokm) D,
21 5

i=1 \melN

soD = UL, (ui/eﬁi). Now, putting b = \/I_;(a; © tu;), we get b =D,
so that this b satisfies the required property, by Priestley duality and Corol-
lary 4.6.2. O

We now use the composite map mk : X — Z to obtain a sheaf represen-
tation over the maximal MV-spectrum. The space (Z, +) of maximal MV-
ideals of A with the spectral topology is a compact Hausdorff space (cf.
Proposition 4.5.4), and hence it is equal to its own co-compact dual (Exam-
ple 2.1.9.3). The composite map mk : X — Z is continuous from (X, t) to
(Z,7") by Lemma 4.5.3, so a fortiori it is continuous from (X, 7”) to (Z, ).
We also have the following.

Proposition 4.6.6. The function mk : X — Z satisfies (Py;) in Definition 3.3.4
foru :=Z.

Proof. Let (U;)ic; be open in Z such that Z = (J;c; U; and let (D;);c; be
clopen downsets in X such that D; N (mk) ! (U; N U;) = D; N (mk) =1 (U;NU;)
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for all i,j € I. Since (mk)~'(Z) = X, we must show that the set

D := Ujc;(D; N (mk)~1(U;)) is a clopen downset. By continuity of mk,
it is clear that D is an open downset in X. To see that D is moreover closed,
notice that D¢ = (J;c;((D;)¢ N (mk) =1 (U;)): the proof of this equality is, mu-
tatis mutandis, the same as the proof of (x) in Proposition 4.6.1. Therefore,
since the set U;c;((D;)¢ N (mk)~1(U;)) is clearly open, we conclude that D
is closed. O

Remark 4.6.7. The function mk does not in general satisfy the condition
(Py) for all open sets of the form U = aN Z. For example, consider the
MV-algebra C([0,1], [0,1]) of continuous functions from [0, 1] to [0,1]. The
maximal MV-spectrum of this algebra is homeomorphic to [0,1]. If a is
the identity function [0,1] — [0,1], then U = @ N Z is the open set (0,1].
The fact that (Py) fails for this set U follows from the fact that there are
continuous functions on (0, 1] which can not be extended continuously to
[0,1], for example, x — sin(1). O
Again, we obtain an étale map p: E,; — Z from the decomposition mk.
The stalk of E;;; at z € Z is the quotient of A corresponding to the subspace
(mk)~1(z), since the specialization order of Z is trivial. This is the MV-
algebraic quotient given by the germinal ideal at z, as we will show now.

Proposition 4.6.8. Forany z € Z, the closed subspace (m o k)~ (z) of X corre-
sponds under Priestley duality to the MV-algebraic quotient A/ o, of A, where the
MV-ideal o, is defined by'!

0; 1= ﬂ L.

y € lznY

Proof. By Proposition 4.4.1, the quotient A/ o, corresponds under Priestley
duality to the subspace

So, ={x € X | Lo, C L}.

Recall that, for any MV-ideal |, we have I, @ | C I, if, and only if, ] C Ik( x)r
SO we can write
So, ={x€X |0, C Ik(x)}‘

We will now prove that S,, = (mok)~(z). Let x € X, and suppose first
that m o k(x) = z. Then I, C I by definition of m, so 0z C Ii(y) by
definition of o;.

Conversely, suppose that m o k(x) # z. Then k(x) £ z, since every prime
MV-ideal is contained in a unique maximal ideal (Corollary 4.1.6), and also

HThat is, the MV-ideal o, is the intersection of all prime MV-ideals contained in the maximal
MV-ideal I,. This is the germinal MV-ideal at z € Z, see [121, Definition 4.7].
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that z £ k(x), since z is a maximal MV-ideal. By Proposition 4.1.5, pick
u,v € Asuchthatk(x) € i,z € vand u Av = 0. If I is any prime MV-
ideal which is contained in z, then in particular 0 € I, and v ¢ I, so that
u € Iy. Hence, u € o, by definition of 0,. However, by construction, we
have u & Iy(y), s0 0z € (), and therefore x ¢ S,,. O

By the preceding proposition, the stalk of the étalé space E,; atz € Z is
the MV-algebra A/o,. This is exactly the étalé space used by Filipoiu and
Georgescu in [46]. Applying Lemmas 3.3.5 and 3.3.3 in light of Proposi-
tion 4.6.6, we obtain the following result.

Corollary 4.6.9 ([46, Proposition 2.16]). Any MV-algebra is isomorphic to the
MV-algebra of global sections of the sheaf over (Z, T+) whose stalk at z € Z is the
quotient by the germinal MV-ideal 0. O

Remark 4.6.10. As shown in Section 4.5, the sets (mk)~!(z), for z € Z,
are the order-components of (X, <), and are in fact also the equivalence
classes of the equivalence relation W defined there. Moreover, every W-
equivalence class contains exactly one point of Z, and the space X/W is
homeomorphic to Z, as was proved in Proposition 4.5.4. O

Concluding remarks

In this chapter, we have applied the methods of Chapter 3 to MV-algebras.
The same methods could in principle be applied to any variety of algebras
with a distributive lattice order. It would be interesting to obtain sheaf-
theoretic representations for other significant classes of distributive-lattice-
ordered algebras in this way.

Our Proposition 4.3.7 determines enough of the structure of the dual Stone-
Priestley space of an MV-algebra to establish our main results on sheaf rep-
resentations. It has been a long-standing open problem in the theory of
lattice-ordered abelian groups to characterise spectra of prime congruences
in topological terms, see [27, and references therein]. The problem of char-
acterizing the dual Stone-Priestley space of a unital lattice-ordered abelian
group is likewise open, to the best of our knowledge. In light of Proposition
4.3.7, we wonder whether a characterisation that uses the partial semigroup
structure described there is possible. A further question of interest is to in-
vestigate the functoriality of the construction under appropriate duals of
MV-algebraic homomorphisms.

Theorem 4.5.5, the MV-algebraic generalization of Kaplansky’s theorem,
shows that one can construct the maximal MV-spectrum of any MV-algebra
from its underlying lattice only. Example 4.5.7 shows that this fails for
prime MV-spectra. The question arises whether there are significant classes
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of MV-algebras with the property that the prime MV-spectrum is uniquely
determined by the underlying lattice of the MV-algebra. Recall that an
algebra in a variety is called simple if it has no non-trivial congruences,
and semisimple if it is a subdirect product of simple algebras. Semisim-
ple MV-algebras are precisely those that arise as subalgebras of the MV-
algebra C(S, [0,1]) of all continuous [0, 1]-valued functions on a compact
Hausdorff space S, see [25, 3.6.8]. Example 4.5.7 uses a non-semisimple
MV-algebra. An MV-algebra that is semisimple, and is such that each of
its quotient algebras also has that property, is known as hyperarchimedean
in the MV-algebraic literature [25, 6.3]. Equivalently, an MV-algebra is hy-
perarchimedean just in case it has no non-maximal prime MV-ideals [25,
6.3.2]. Therefore the underlying lattice of a hyperarchimedean MV-algebra
determines its prime MV-spectrum to within a homeomorphism by Theo-
rem 4.5.5. We wonder whether the semisimple property, or a strengthen-
ing thereof that is weaker than the hyperarchimedean property, suffices to
guarantee that the prime MV-spectrum of an MV-algebra be uniquely de-
termined by its underlying lattice.



Chapter 5. A non-commutative Priestley
duality

In this chapter, we prove that the category of left-handed strongly distributive skew
lattices is dually equivalent to a category of sheaves of sets over local Priestley
spaces. Our result thus provides a non-commutative version of classical Priestley
duality for distributive lattices. This result also generalizes the recent development
of Stone duality for skew Boolean algebras. From the point of view of skew lattices,
Leech showed early on that any strongly distributive skew lattice can be embedded
in the skew lattice of partial functions on some set with the operations being given
by restriction and so-called override. Our duality shows that there is a canoni-
cal choice for this embedding. Conversely, from the point of view of sheaves over
Boolean spaces, our results show that skew lattices correspond to Priestley orders
on these spaces and that skew lattice structures are naturally appropriate in any
setting involving sheaves over Priestley spaces. This chapter is a modified version
of the paper [8].

Skew lattices [104, 105] are a non-commutative version of lattices: alge-
braically, a skew lattice is a structure (S, V,A), where V and A are binary
operations which satisfy the associative and idempotent laws, and certain
absorption laws. A (proto)typical example of a skew lattice is the collection
of partial functions from a set X to a set Y, equipped with two binary oper-
ations called restriction and override. Here, the restriction of f by g is defined
as the function which takes the value of f only if both f and g are defined,
and the override of f by g is the function which takes the value of g if it
is defined, and the value of f otherwise. Skew lattices of partial functions
always have a zero element, namely the function with empty domain. In
addition, we will see that they satisfy two additional axioms, namely strong
distributivity, which generalizes the usual distributive law for lattices, and
left-handedness, cf. Section 5.1 below. It is a consequence of the results in
this chapter that every left-handed strongly distributive skew lattice with
zero can be embedded into a skew lattice of partial functions. This fact
was first proved in [106, 3.7] as a consequence of the description of the
subdirectly irreducible algebras in the variety of strongly distributive skew
lattices. Our proof will not depend on this result, and it will moreover pro-
vide a canonical choice of an enveloping skew lattice of partial functions.
A related result in computer science is described in [10], where the authors
give a complete axiomatisation of the structure of partial functions with the
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operations override and “update’, from which the ‘restriction” given above
can also be defined.

In this chapter, we generalize the above idea of ‘skew lattices of partial
functions’ to ‘skew lattices of local sections of a sheaf’. If F is a sheaf over
a Boolean space X, then the set of all local sections with clopen domains
forms a skew Boolean algebra [7, 96]. If X is moreover equipped with a
partial order that makes it into a Priestley space, then the local sections
with domains that are clopen downsets form a left-handed strongly dis-
tributive skew lattice. It follows from our duality in this chapter that this
accounts, up to isomorphism, for all such skew lattices: we will prove that
every left-handed strongly distributive skew lattice with zero is isomorphic to a
skew lattice of all local sections over clopen downsets of some bundle. Thus, in
any setting where sheaves over Priestley spaces are present, strongly dis-
tributive skew lattice structures are intrinsic, in addition to whatever other
structure the stalks of the sheaf may be equipped with. Moreover, it will be
a consequence of our duality result that there is a canonical choice for the
bundle and base space that represent a given skew lattice. We will prove
that, among all representing bundles for a given skew lattice, there is a
unique bundle p : E — X such that p is a local homeomorphism and X is
a local Priestley space (i.e., a space whose one-point-compactification is a
Priestley space). This result generalizes both Priestley duality, and recent
results on Stone duality [137] for skew Boolean algebras [7, 96, 98, 97].

In conclusion, our results show that the embeddability of strongly distribu-
tive skew lattices in partial function algebras is not coincidental, but a fully
structural and natural phenomenon. They also show that strongly distribu-
tive skew lattices are intrinsic to sheaves over Priestley spaces and that
each such lattice has a canonical embedding into a skew Boolean algebra,
namely the skew Boolean algebra of all local sections with clopen domains
over the corresponding base. Thus our results open the way to exploring
the logic of such structures. In particular, they provide a candidate notion
of Booleanization, which may in turn lead to the development of a non-
commutative version of Heyting algebras; also see the concluding remarks
in this chapter.

Outline of the chapter. We first provide background on skew lattices (Sec-
tion 5.1), and recall a ‘local’ version of Priestley duality, which holds for dis-
tributive lattices that do not necessarily have a largest element (Section 5.2).
After these preliminaries, we will be ready to state our main theorem (The-
orem 5.2.6), that the categories of left-handed strongly distributive skew lat-
tices and sheaves over local Priestley spaces are dually equivalent. Starting
the proof of this theorem, we first describe the functor which associates a
skew lattice of local sections to a sheaf (Section 5.3). To show that this func-
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tor is part of a dual equivalence, we will describe how to reconstruct the
sheaf from its skew lattice of local sections (Section 5.4), and give a general
description of this process for an arbitrary left-handed strongly distributive
skew lattice. Finally (Section 5.5), we will put together the results from the
preceding sections to prove our main theorem.

5.1. Strongly distributive left-handed skew lattices

For an extensive introduction to the theory of skew lattices we refer the
reader to [104, 105, 106, 107]. To make our exposition self-contained, in this
section we collect some definitions and basic facts of the theory.

Definition 5.1.1. A skew lattice S is an algebra (S, A, V,0) of type (2,2,0),
such that the operations A and V are associative, idempotent and satisfy
the absorption identities

xA(xVy)=x=xV(xAy),
(yVx)Ax=x=(yAx)Vx,
and the 0 element satisfies x A0 =0 = 0 A x.

Notice that it follows from the absorption laws that 0 is a neutral element
for V. Also note that a lattice is a skew lattice in which A and V are commu-
tative.

Remark 5.1.2. In this chapter, the terms “skew lattice” and “lattice” will
always be understood to mean “skew lattice with zero” and “lattice with
zero”. However, throughout this chapter, in contrast with all other chap-
ters in this thesis, neither skew lattices nor lattices are assumed to have an
element 1 that is absorbent for V.

The partial order < on a skew lattice S is defined by
X<y <= xNy=x=yAx,

which is equivalent to x Vy = y = y V x, by the absorption laws. Note
that 0 is the minimum element in the partial order <. If S and T are skew
lattices, we say a function i : S — T is a homomorphism if it preserves the
operations A, V and the zero element.

The full inclusion of lattices into skew lattices has a left adjoint, which can
be explicitly defined using Green’s equivalence relation D, which is well
known in semigroup theory [73, 81]. Recall that D is the equivalence rela-
tion on a skew lattice S defined by xDy if, and only if, x Ay Ax = x and
YyAx Ay =y, orequivalently, x VyVx =xand y VxVy = y. The follow-
ing is a version of Leech’s “first decomposition theorem for skew lattices”
[104].
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Theorem 5.1.3 ([104], 1.7). Let S be a skew lattice. The relation D is a con-
gruence, and ag : S — S/D is a lattice quotient of S. For any homomorphism
h: S — L where L is a lattice, there exists a unique homomorphism h:S/D— L
such that ho ag = h.

In particular, any skew lattice homomorphism & : S — T induces a homo-
morphism between the lattice reflections of S and T, which is defined as the
unique factorization of the composite map aroh : S — T/D. By a slight
abuse of notation, we will also denote this homomorphism by &, which is
then a map from S/D to T/D. In the context of lattices which may not have
a largest element, the notion of proper homomorphism [37] is pertinent.

Definition 5.1.4. A lattice homomorphism f : Ly — L is called proper
provided that for any y € L, there is some x € Lq such that f(x) > y. We
call a skew lattice homomorphism & : S — T proper if its lattice reflection h
is proper.

Note that a lattice homomorphism between bounded lattices is proper if, and
only if, it preserves the largest element.

There are several non-equivalent generalizations of the notion of ‘distribu-
tivity” for lattices to the non-commutative setting. The objects of study in
this chapter are left-handed strongly distributive skew lattices.

Definition 5.1.5. A skew lattice is called strongly distributive if it satisfies
the identities

xA(yVz)=(xAy)V(xAz), (5.1)
(yVz)Ax=(yAx)V(zAx). (5.2)

A skew lattice is called left-handed if it satisfies the identity
XAy Ax =xAy,or equivalently, x VyVx =y Vx.
The notion of right-handed skew lattices is defined dually.

Note that, if S is a strongly distributive skew lattice, then S/ D is a distribu-
tive lattice. We recall Leech’s second decomposition theorem, which relates
left-handed and right-handed skew lattices to general skew lattices. Recall
that Green’s equivalence relation R for the operation A of a skew lattice S is
defined by xRy if, and only if, x Ay = y and y A x = x. Dually, £ is defined
on Sby xLyif, andonlyif, x Ay =xandy Ax =y.

Note that what we call a strongly distributive skew lattice here is called a meet bidistributive
and symmetric skew lattice in the terminology of [106].
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Theorem 5.1.6 ([104], Theorem 1.15). The relations L and R are congruences
for any skew lattice S. Moreover, S/ L is the maximal right-handed image of S,
S/R is the maximal left-handed image of S, and the following diagram is a pull-
back:

S S/R
S/L S/D

Left-handed strongly distributive skew lattices have some desirable alge-
braic properties that we collect here, for use in what follows.

Lemma 5.1.7. Let S be a left-handed strongly distributive skew lattice, and let
a,a,beSs.

1. The semigroup (S, A) is left normal, i.e., bAaNa =bANa Aa.
2. Ifa,a’ <band [a]p = [a']p, thena = a’.

Proof. For the first item, recall that strongly distributive skew lattices are
normal, i.e., they satisfy the equation b AaAa’ A\b=bAa' NaADb,seee.g.
[106, Theorem 2.5]. Left normality then easily follows from left-handedness.
For the second item, note that aDa’ and left-handedness together yield
aNa’ =aanda’ Aa = a'. Therefore, sincea < b,wegeta =bAa=bAaAd,
and similarly a’ = b A a’ A a. Using the first item, we conclude thata = a’.
O

In what follows, primitive skew lattices will play an important role. A skew
lattice S is called primitive if it has only one non-zero D-class, or, equiva-
lently, if S/D is the two-element distributive lattice, 2. For any set T, there
is a unique primitive left-handed skew lattice Pr with T as its only non-zero
D-class. The operations inside this D-class are determined by lefthanded-
ness: t At' = tand t VvVt = t, forany t,#' € T. Note that Pr is strongly
distributive.

t t

0
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5.2. Sheaves over local Priestley spaces

In this section we first recall a slight modification of Priestley duality, which
is available for distributive lattices that may not have a largest element. We
then define the category of sheaves over local Priestley spaces, and state
our main theorem.

We denote by DL the category of distributive lattices with a zero element
and lattice homomorphisms, and by DL the (non-full) subcategory con-
taining only the proper lattice homomorphisms (cf. Definition 5.1.4). Note
that the category DL/ is dually equivalent to the category PS® of Priest-
ley spaces with a largest element and continuous monotone maps between
them. Here, the largest element, oo, represents the constantly zero homo-
morphism into 2, the empty prime filter, or the full prime ideal. To ob-
tain a duality for the subcategory DLg of DL, we now reason as follows.
For objects D, E of DL, the proper homomorphisms correspond to those
morphisms in PS® for which f~!(c0) = {c0}. Therefore, if we only want
to represent proper homomorphisms, we can safely remove the largest ele-
ment co from the Priestley dual space X of a lattice D, to obtain a space X'.
The original Priestley space X can be recovered as the ordered one-point
compeactification of X’. This leads to the following definition.

Definition 5.2.1. We say that (X, 7, <) is a local Priestley space if its ordered
one-point-compactification (X%, t*, <), with co a new largest element, is
a Priestley space. In the category LPS of local Priestley spaces, a morphism
f (X, <x) — (Y,1y,<y) is the restriction of a continuous mono-
tone map between the one-point-compactifications f : X — Y for which

[ (ooy) = {oox}.

Remark 5.2.2. It is possible to give an equivalent definition of the cate-
gory LPS without referring to the ordered one-point-compactification: local
Priestley spaces are exactly the totally order-disconnected spaces for which
the space (X, T+) has a basis consisting of T-compact open downsets, and
LPS-morphisms (X, tx, <x) — (Y, 7y, <y) are equivalently described as
continuous monotone maps with the further property that the inverse im-
age of a Ty-compact set is Tx-compact.

There is a dual equivalence between LPS and DLy, that can be described as
follows. Let D, := DL!(D, 2) \ {co}, which is equal to DLy(D, 2), since the
only non-proper homomorphism D — 2 is co. Then D is a local Priestley
space, and the duals of proper homomorphisms D — E restrict correctly to
functions E, — D, by the arguments given above. Conversely, if (X, T, <)
is a local Priestley space, let (X, T, <)* be the distributive lattice of clopen
proper downsets of the ordered one-point-compactification of (X, 7, <), or
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equivalently, compact open downsets of (X, 7, <); (—)* extends to a functor
in the obvious manner. We then have the following corollary to Priestley
duality.

Corollary 5.2.3. The contravariant functors (—). : DLy — LPS and
(=)* : LPS — DLy establish a dual equivalence between the categories DL
and LPS.

We now define the category of sheaves over local Priestley spaces and state
our main result. We refer to Section 3.1 in Chapter 3 for the definitions of
sheaf and étalé space, and the correspondence between them.

Remark 5.2.4. In this chapter, contrary to earlier chapters, we will only be
concerned with sheaves and étalé spaces of sets; sheaves and étalé spaces
of distributive lattices will not play a role. We will interchangably use the
equivalent descriptions of a sheaf as a functor and as an étale map, cf. The-
orem 3.1.3. Throughout this chapter, “étale map” will be understood to
mean “surjective local homeomorphism”, and “sheaf” will be understood
to mean “sheaf whose associated étale map is surjective”. Note that such
sheaves do not necessarily have global sections. This agrees with the fact
that the skew lattices in this chapter do not necessarily have a largest D-
class.

If E is a sheaf on a topological space X and f : X — Y is a continuous
map, recall that the direct image sheaf f.E over Y is defined by letting the
set of sections over V. C Y be E(f~1(V)). We will denote by Sh(LPS)
the category of sheaves over local Priestley spaces: an object is (X, T, <,E),
where (X, 7,<) is a local Priestley space, and E is a sheaf. A morphism
from (X, 7, <,E)to (Y, 7,<,F)isapair (f,A), where f is an LPS-morphism
(X,7,<) = (Y,1,<),and A : F = f,E is a natural transformation; see the
diagram in Figure 5.1. If (f,A) : (X,E) — (Y, F)and (g, 1) : (Y,F) — (Z,G)
are morphisms in Sh(LPS), their composition is defined by (gf, v), where
vy ‘= /\gfl(ll) o Uy-

Figure 5.1: A morphism in the category Sh(LPS).

In the proof of Proposition 5.5.1, we will use the following lemma.
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Lemma 5.2.5. Suppose (f,A) and (f, ") are morphisms from a sheaf E on X to
a sheaf F on Y, and suppose that B is a basis for the space Y. If, for all V € B,
Av =AY, then A = A,

We are now ready to state our main theorem; the rest of this chapter will be
devoted to its proof.

Theorem 5.2.6. The category SDL of left-handed strongly distributive skew lat-
tices is dually equivalent to the category Sh(LPS) of sheaves over local Priestley
spaces.

5.3. The functor from spaces to algebras

Let X = (X, 7, <) be a local Priestley space and let p : E — X be a bundle
over X, i.e., a continuous function to X. The sheaf of local sections of p is a
functor Q(X)°P — Set, which we also denote by the letter E. Let L := X*
be the distributive lattice of compact open downsets of X. We define a
skew lattice structure on the set S := | |;¢; E(U), that is, the set of all local
sections over all compact open downsets of X. Let U,V € Land a € E(U),
b € E(V). We define the override a \/ b to be the local section over U U V
given by
b(x), ifxeV,

(aVh)(x) := { aEx;, ifxelu\V.
Note that this indeed defines a continuous section from U U V to E, so that
aVb e E(UUV). The section a V b is the patch of the compatible family

consisting of the two elements a[y;\y and b|y. We define the restriction a A b
to be the local section over U N V defined by

(5.3)

(anb)(x):=a(x)forallx e UNYV, (5.4)

i.e., a Ab = alyny. Note that the unique section over the empty set is a
zero element for this operation A, and we shall therefore denote it by 0. In
the following proposition, we collect some basic properties of the algebra S
that we constructed here.

Proposition 5.3.1. Let p : E — X be a bundle over a local Priestley space,
L:= X*. Let S = | |yyer, E(U) be the algebra defined in (5.3) and (5.4). Then the
following hold.

1. The algebra S is a left-handed strongly distributive skew lattice.
2. The lattice reflection S/ D of S is isomorphic to L.

3. The partial order on S is given by a < b if, and only if, the section a is a
restriction of b.



5.3. The functor from spaces to algebras 111

Proof. It is known [106] and easy to check that the set P(X, E) of all partial
maps from X to E, equipped with operations defined as in (5.3) and (5.4),
is a left-handed strongly distributive skew lattice. Since S is a subalgebra
of P(X,E), itis also a left-handed strongly distributive skew lattice, which
proves item (1). For item (2), note that the relation D on S is given by aDb
if, and only if, dom(a) = dom(b). Hence, S/D is isomorphic to the lattice
of domains, L. Item (3) follows from the definitions of the partial order and
the operation A. O

So far, we only needed to assume that p : E — X was a bundle. To extend
the above construction to a contravariant functor from Sh(LPS) to SDL, it
will be convenient to work with étale maps. For any étale map p : E — X,
we denote by (E*,V, A,0) the dual algebra of local sections defined above.
Suppose that p : E =+ X and g : F — Y are étale maps over local Priestley
spaces, and that (f, A) is a morphism from the sheaf E to the sheaf F, as in
Figure 5.1 above. We define a skew lattice morphism (f,A)* : F* — E*. Let
a € F*,s0a € F(U) for some compact open downset U of Y. Then f~1(U)
is a compact open downset of X. We now define (f,A)*(a) := Ay (a), which
is an element of f.E(U) = E(f~1(U)), i.e., a section over f~1(U).

Lemma 5.3.2. The function (f,A)* : F* — E* isa morphism in SDL, for which
the lattice reflection (f, A)* is equal to f*.

Proof. Let us write h for the function (f, A)*. We show in detail that / pre-
serves the operation A, and leave it to the reader to verify that / preserves
V and 0, since the proofs are similar. Leta € F(U), b € F(V). By defini-
tion of A, h(a) Ah(b) is h(a)| -1 (y)nf-1(v)- By naturality of A, the following
diagram commutes:

Fuy — M fE)
(_)|Umvh h(_”fl(llﬂv)
FUNY) ——— fEUNY)

In particular, we get
h(a Ab) = Aunv(a Ab) = Aunv(@alunv) = Au(@) -1 unv)
= h(ﬂ)|f71(u)mf*1(v) = h(a) ANh(b).

Further note that i : F*/D — E*/D is exactly the proper homomorphism
that is dual to f in Priestley duality. Therefore, /1 is a morphism in SDL and
h= f*. O
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In conclusion, we record the following proposition.

Proposition 5.3.3. Theassignments (E, p, X) — (E, p, X)* and (f, ) — (f, T)*
define a contravariant functor (—)* from Sh(LPS) to SDL.

Proof. By Proposition 5.3.1.1 and Lemma 5.3.2, the assignments are well-
defined. We leave functoriality to the reader. O

5.4. Reconstructing a space from its dual algebra

In this section, we show how a sheaf E over a local Priestley space X can be
reconstructed (up to homeomorphism) from its dual algebra E*, defined in
the previous section.

Fix a surjective étale map p : E — X over a local Priestley space X. Note
that the assumptions that p is surjective and that X is a local Priestley space
imply that, for any x € X, there exists a section of p over a compact open
downset that contains x. Let E* be the left-handed strongly distributive
skew lattice associated to E in Proposition 5.3.3, and let « : E* — L be the
lattice reflection of E* (cf. Theorem 5.1.3). Note that, by Proposition 5.3.1.1,
the lattice reflection L of E* is isomorphic to X*, so that X is homeomorphic
to the Priestley dual space L, of L. By Theorem 5.1.3, the set DLy(L, 2) that
underlies the space L, is in a natural bijection with SDL(E*,2). Note that
the composite bijection X — SDL(E*,2) sends x € X to the homomor-
phism h, : E* — 2 defined by

[ 1 ifxedom(a)
h(a) := { 0 otherwise. (5-5)

Obviously, the bijection x — hy can be extended to an order-homeomorphism
by translating the order and topology of X to SDL(E*, 2). We thus naturally
equip the set SDL(E*, 2) with the reverse pointwise order, and the topol-
ogy generated by sets of the form {h € SDL(E*,2) : h(a) = 1} and their
complements, where a ranges over E*.

We will now show that the algebraic structure of E* is enough to recon-
struct, for any x € X, the stalk E, of the sheaf E at x. To this end, fix x € X
and write Py for the primitive skew lattice whose non-zero D-class is the set
E.. We define a natural evaluation homomorphism evy : E* — P, by

[ a(x) ifx € dom(a)
er(ﬂ) = { 0 otherwise.

Note that the composition a o evy : E* — 2 is exactly the map h, naturally
associated to x in (5.5). We now characterize the kernel of the homomor-
phism ev, by an algebraic property which only refers to the map h, and the
skew lattice operations of E*, as follows.
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Lemma 5.4.1. Let x € X. Forany a,b € E*, the following are equivalent:
1. evy(a) = evy(b);

2. there exist c,d € E* such that hy(c) = 0, hy(d) =1, and
(and)Ve=(bAd)Ve.

Proof. 1t is obvious from the definitions of A and V that (2) implies (1). To
see that (1) implies (2), suppose that evy(a) = evy(b). Note that, in par-
ticular, hy(a) = hy(b), so that x € dom(a) if, and only if, x € dom(b).
Therefore, either (i) x € dom(a) N dom(b), or (ii) x ¢ dom(a) U dom(b).
In case (i), we have a(x) = evy(a) = evy(b) = b(x), so that x is in the
equalizer ||a = b||, i.e., the set of elements in dom(a) N dom(b) for which
a and b take the same value. Note that ||[a = b|| is open in X because a
and b are continuous. Since X is a local Priestley space, there exist compact
open downsets U and V of X such thatx € U\ V C ||a = b||. Using that
the étale map is surjective, pick d € E* with x € dom(d) C U. Again by
surjectivity of the étale map, note that the set V can be covered by compact
open downsets which are domains of local sections. Therefore, by compact-
ness of V, there exist cq,...,c;, € E* whose domains cover V. Let ¢ be the
section defined by V!, ¢;, so that dom(c) = V. By construction, we have
hy(c) = 0 and hy(d) = 1. It is easy to verify, using the definitions of A
and V, that (a Ad) Vc = (bAd) Ve In case (ii), pick any section d with
x € dom(d) and define ¢ := a V b. It is again easy to check that ¢ and d
satisfy the requirements of (2). O

Hence, given a point x € X, we define a relation ~, on E* by
aryb < 3dc,de€ S :hy(c) =0,he(d) =1, and (aANd)Vec= (bAd) Ve,
and we immediately obtain:

Proposition 5.4.2. Let x € X. The relation ~ is a skew lattice congruence on
E*, and there is an isomorphism between E*/~ and Py that takes the quotient
map E* — E*/~ to the evaluation map evy : EX — Py.

Proof. The preceding lemma exactly shows that ~ is the kernel of the mor-
phism evy. The result now follows from the first isomorphism theorem of
universal algebra. O

For a primitive skew lattice P, we denote by P! the unique non-zero D-class
of P, considered as a set.

Corollary 5.4.3. The étalé space p : E — X is isomorphic to q : (E*). — X,
where
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o the set underlying the space (E*) is
| (E/~2)! = {(x,la]~,) : x € X, [a], € (E*/~x)'},

xeX

e the function q : (E*). — X sends an element of the disjoint union to its
index x € X,

e the topology on (E*), is given by taking as a basis of open sets the sets of the
form
a:={(x,[a]~,) | x € dom(a)},

where a ranges over the elements of E*.

Proof. Define amap ¢ : E — (E*), by sending e € E to (x,[a]~,), where
a is any local section for which a(x) = e; such a section exists because p
is an étale map, and the value of ¢(e) does not depend on the choice of a
because of Lemma 5.4.1. By Proposition 5.4.2, i is a bijection. It is not hard
to see from the definition of the topologies on E and (E*), that ¢ is open
and continuous. Hence, ¢ is a homeomorphism, and ¢ clearly commutes
with the étale maps. O

We now generalize the above construction to an arbitrary left-handed strongly
distributive skew lattice S. This is the main contribution of this chapter, and
it is the key to the proof that the functor (—)* defined in Section 5.3 is part
of a contravariant equivalence of categories.

Let S be a left-handed strongly distributive skew lattice. Inspired by the
above results, for any proper homomorphism / : S — 2, we define a rela-
tion ~y, as follows:

ar~pb <= e, deS:h(c)=0,h(d) =1, and (aANd)Vc=(bAd)Vec.

The following proposition is the central technical result that we need to
construct the étalé space dual to the skew lattice S.

Proposition 5.4.4. Let S be a left-handed strongly distributive skew lattice, and
h : S — 2 a proper homomorphism.

1. The relation ~y, is a skew lattice congruence on S which refines ker(h).

2. The quotient skew lattice S/ ~y, is primitive and the diagram
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commuites.

3. For any commuting diagram in SDL of the form
S

g

p—% 5o
where P is primitive, there is a unique factorization t : S/~ — P such that
tomy, =o0.

Proof. (1) Itis clear that ~j, is reflexive and symmetric. For transitivity, sup-
pose thata ~, f ~y, b. Pick ¢,c’,d,d’ € S are such that h(c) = 0 = h(c),
h(d)=1=h(d), (and)Vc= (fAd)Vcand (bAd )V = (fAd)V .
Putc” :=cVvcandd’ :=dAd, thenh(c”") =0and h(d") = 1since hisa
homomorphism. Note that the elements (a Ad”) Vv ¢” and (bAd") V"
are in the same D-class, and that both are below f V ¢”. Therefore, by
Lemma 5.1.7.2, (aAd") VvV " = (bAd") Vv ", and we obtain a ~j b. We
now show that ~j, is a congruence for the operations V and A. Suppose
thata ~j, a/,and letb € S. We prove thata Vb ~, 2’ VbandbVa ~, bVa'.
Pick ¢,d € Ssuch that h(c) = 0,h(d) =1and (aAd)Vec = (a ANd) Ve To
prove that ((aVb) Ad) Ve = ((a'Vb) Ad) V¢, we use distributivity and
left-handedness, as follows:

((avb)And)Ve=(and)Vv (bAd) Ve (strong distributivity)
=(and)VeV(bAd) Ve (left-handedness)
=@ Ad)VeVv(bAd) Ve (assumption)
=@ ANd)V(bAd)Vc (left-handedness)
=((@Vvb)Ad)Ve. (strong distributivity)

By a similar, but slightly simpler, calculation, (bVa)Ad = (bVa') Ad.
The proof that ~, is also a congruence for the operation A on both sides
proceeds along similar lines, using left normality (Lemma 5.1.7.1), and is
left for the reader to verify. To see that ~j, refines ker(h), suppose that
a ~y b. Pick ¢,d € S as in the definition of ~},. Then

h(a) = (h(a) AR(d)) V h(c) = h((a Ad) V) = h((bAd) V) = h(b),

so indeed (a,b) € ker(h).

(2) We need to show that, for any a,b € S, [a]~,D[b]~, if, and only if,
h(a) = h(b). Note that if [a|~, D[b]~,, then h(a) is also D-equivalent to
h(b) in 2, which means that i(a) = h(b). For the converse, suppose that



116 Chapter 5. A non-commutative Priestley duality

h(a) = h(b). We distinguish the two cases (i) h(a) = 1 = h(b) and (ii)
h(a) = 0 = h(b). In case (i), we get [a A b]~, = [a]~, by choosing ¢ := 0
and d := b A a as in the definition of ~y,. Similarly, [b A a]~, = [a]~,. Hence,
mty(a) and 71;,(b) are D-equivalent. In case (ii), since & is proper, pick some
d € Ssuchthat h(d) = 1. Then (aAd)Va =a = (0Ad)Va, so we get
that a ~j, 0. Similarly, b ~, 0, so in fact we obtain [a]., = [0]~, = [b]~,. In
particular, [a], D[b]~,. We conclude that the D-class of [0], is h~1(0), and
that, for any a with i(a) = 1, the D-class of [a]., is h~1(1).

(3) Suppose that o : S — P is a primitive quotient of S such that a oo = h.
It is clear that there is at most one factorization of 7, through 0. We now
show that the assignment [a]~, — o(a) does not depend on the choice of
representative for the class [a]~,. Suppose thata ~j a’. If h(a) = 0 = h(a'),
then [o(a)]p = h(a) = 0,s0 (a) = 0, and similarly o(a’) = 0. Otherwise,
we have h(a) =1 = h(a’). Pick ¢,d € S such that h(c) = 0, h(d) = 1 and
(and)Ve=(a'"ANd)Vc. Asbefore, since h(c) = 0, we have o(c) = 0. Since
P is primitive, we have, for any non-zero x,y € P, that x A y = x. Hence

gla)=c(a)No(d)=(c(a)No(d))Vo(c)=c((and)Vec),

and similarly o(a’) = o((a’ Ad) V¢). Since (a Ad) Ve = (a' Nd) Ve, we
conclude that o(a) = o(a’). O

Remark 5.4.5. Inlight of this proposition, more can be said about the struc-
ture of primitive quotients of a left-handed strongly distributive skew lat-
tice S. There is a natural a partial order on the set of quotients of S, defined
by saying that a quotient g : S — Q is below another quotient ¢’ : S — Q' if
the map g factors through q’. Suppose p : S — P is any primitive quotient
of S. Then h := xop : S — 2 is a minimal quotient of S below the primitive
quotient P, and S/~y, is a maximal primitive quotient of S which is above
P. The partially ordered set of primitive quotients of S is thus partitioned,
and each primitive quotient lies between a unique maximal and minimal
primitive quotient of S. The minimal primitive quotients of S are exactly
the elements of the base space X, and the non-zero elements of the maximal
primitive quotients will be the elements of the étalé space S, see below.

Remark 5.4.6. An alternative way to define the equivalence relation ~j on
S is the following. Let us call a subset F of S a preprime filter over h if it
satisfies the following properties:

1. ifae F,be Sanda < b,thenb € F;
2. ifa,be FthenaAb € F;
3. ifaeF,be Sand h(b) =0,thenaVb € F;
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4. ifa € F, thenh(a) = 1;
5. if b € Sand h(b) = 1, then there is a € F such that [a|p = [b]p.

We call a preprime filter over h a prime filter over h if it is minimal among the
preprime filters over i. One may then show that the non-zero equivalence
classes in S/ ~}, (viewed as subsets of S) are exactly the prime filters over h.
Therefore, the equivalence relation ~, can also be described as the equiva-
lence relation inducing the partition whose classes are the prime filters over
h, and h=1(0).

Let S be a left-handed strongly distributive skew lattice. Write X for the
local Priestley space (S/D), that is dual to the lattice reflection S/D of S.
Note that, by definition of (S/D), and Theorem 5.1.3, elements of X can be
represented as proper homomorphisms # : S — 2. We now define the étale
map g : S, — X dual to the skew lattice S.

Definition 5.4.7. Let S and X be as above. For h € X, we define the stalk
over h to be the non-zero D-class of S/ ~y,. The set underlying the space S is
defined as the disjoint union of the stalks, that is,

Sei= || (8/~n)' = {(h[a]~,) |1 € X, h(a) =1}.

heX

The function q : S, — X is defined by q((h, [a]~,) := h. Recall that each
a € S defines a compact open downset @ = {h € X | h(a) = 1} of X. For
any a € S, we naturally define the local section s, : @ — S, of q over @ by
sa(h) := (h, [a]~, ). Finally, define the topology on S, by taking the sets im(s;)
as a subbasis for the open sets, where a ranges over S.

Lemma 5.4.8. Each function s, : @ — S, is continuous and q : S, — X isa
surjective étale map.

Proof. Leta,b € S be arbitrary. We need to show that the set s; ! (im(s)) is
open in X. Let h € s;!(im(sy)) be arbitrary. Then & € @ and a ~, b. Pick
c,d € Ssuch thath(c) =0,h(d) =1and (aAd)Vc= (bAd)Vc, by defini-
tion of ~y,. Let U, := (d \ ¢) N@Nb. Note that h € Uj, since h(b) = h(a) =

Moreover, for any i’ € Uy, we also have h'(a) =1 = I'(b), W'(c¢) = 0 and
W(d) = 1, so that a ~j; b. We conclude that h € U, C s;'(im(s)), so
s; 1 (im(sp)) is open. Since each h € X is proper, each stalk (S/~j)! is non-
empty, so g is surjective. To prove that g is an étale map, lete = (I, [a]~,),
which is in S,. Then glim(,) © im(ss) — @ has s, as its continuous in-
verse. O
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5.5. Proof of the duality theorem

In this section, we will prove that the contravariant functor (—)* from Sh(LPS)
to SDL (cf. Proposition 5.3.3 above) is full, faithful and essentially surjec-
tive. By a basic result from category theory (cf., e.g., [99, Thm IV.4.1]) it
then follows that (—)* is part of a dual equivalence of categories, prov-
ing Theorem 5.2.6. The proof that (—)* is full and faithful is reasonably
straightforward.

Proposition 5.5.1. The contravariant functor (—)* is full and faithful.

Proof. Let E and F be sheaves over local Priestley spaces X and Y, respec-
tively. We show that the assignment which sends a Sh(LPS)-morphism
(f,A) : (X,E) — (Y,F) to the SDL-morphism (f,A)* : (Y,F)* — (X,E)*
is a bijection. If (f,A)* = (g, i)*, then f* = ¢*, using Lemma 5.3.2. There-
fore, by Priestley duality, f = g. Moreover, if U is a basic open setin Y, then
Ay = uy, using the definition of (f,A)* = (g, )*. Since a natural trans-
formation between sheaves is entirely determined by its action on a basis
of open sets (Lemma 5.2.5), it follows that A = p. This concludes the proof
that (—)* is faithful. If h : (Y, F)* — (X, E)* is a homomorphism of skew
lattices, then  is a proper homomorphism, so by Priestley duality, there is
aunique f : X — Y such thath = £(f) = f~1. For U a basic open, define
Ay @ E(U) — E(f~1(U)) by sending s € F(U) to h(s), which is indeed
an element of E(h(s)) = E(f~1(U)). Now, if U is an arbitrary open and
s € F(U), we can write U as a union of basic open sets (U;);c;. Then also
f~1(U) is the union of the basic open sets (f ~!(U;));c;. It follows from the
fact that 1 is a homomorphism that (h(s)|¢-1(y;,))ier is a compatible family,

so there is a unique patch in E(f~1(U)), which we define to be A;(s). We
leave it to the reader to check that A is a natural transformation and that
(f,A)* =h. O

The proof that (—)* is essentially surjective is more involved, and uses
the construction of S, from the previous section. Throughout the rest of
this section, let S be a left-handed strongly distributive skew lattice. By
Lemma 5.4.8, we have an étalé space S, over the local Priestley space X,
which is by definition SDL(S,2). The algebra (S,)* is the skew lattice of
local sections of S, with compact open downward closed domains. There
is a natural function ¢ : S — (54)* which sendsa € Stos; € (Si)* (cf.
Lemma 5.4.8). We will show in Propositions 5.5.2, 5.5.4 and 5.5.6 that ¢ is
an isomorphism of skew lattices.

Proposition 5.5.2. The function ¢ : S — (S.)* is a homomorphism of skew
lattices.
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Proof. It is clear that ¢ preserves 0. Leta,b € S. We need to show that
Savb = Sa V Sp and s;ap = Sa A Sp. Note that in these equations, the oper-
ations V and A on the right hand side are the operations defined in (5.3)
and (5.4) of Section 5.3, whereas the operations V and A on the left hand
side are the operations of the given left-handed strongly distributive skew
lattice S. Note that the domain of s, is avh =aU b, which is also the
domain of s, V s,. We now claim that s,y;(x) = s,(x) for x € b, and that
Savp(X) = sq(x) for x € @\ b, agreeing with the definition of s, Vs

e Letx € b. Ford :=band ¢ := 0, itis easy to show that
((avb)nd)Ve= (bAd)Vec solaVbl., = [b]~,.

X

o Letx € E\E. For d := a and ¢ := b, we then have
((avb)And)Ve=(aNnd)Vc sothat [aVb]., = [a]~,.

Similarly, the domain of s,,; is equal to the domain of s; A s;, and if x is

an element of this domain, then we have ((a Ab) Ad) Vc = (aAd) Ve, for

d:=aAband c:= 0, proving that [a A b]~, = [da]~,. O

To establish surjectivity of ¢, we will need the following lemma.

Lemma 5.5.3. For each n € N, the following holds. If s : U — S is a section
on a compact open downward closed subset U of X, and if a1,...,an, c1,...,Cn,
dq,...,dy are elements of S such that

1. foreachi€ {1,...,n},¢ C c?i;

2. U= UL, (di\&);

3. foreachi e {1,...,n},d; \ & C @,unds\gi\a = s”i|3i\07’
then there exists an element a € S such that s = s,.

Proof. By induction on n € IN. For n = 0, it follows from assumption (2)
that U = @, so s is the empty function, and the (unique) element of S such
thats = s;isa = 0. Let n > 1, and assume the statement is true for n — 1.
Suppose that s : U — S,, a1,...,as, ¢1,...,cn, and dy, ..., d, satisfy the
assumptions (1)—(3).

Fix j € {1,...,n}. We will apply the induction hypothesis to the function
s|g], : €] — S, Fori € {1,...,n} with i # j, define cij = ¢ Acjand
di,j =d; A Cj- Note that

dij\¢; = (di\&G)Ng,

sothat¢; = UN¢; = Ui#(j,-,\j \ ¢i,j)- Assumptions (1) and (3) also clearly
hold for the elements a;, c; j, d; ;, where i ranges over {1,...,n} \ {j}. By the
induction hypothesis, there exists an f; € S such that s|5j = Sf;-
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Thus, for each j there exists an f; € S such that s ¢ = sf- Consider the

element
n

\/ aj Ndj) V fj).

We claim that s = s,. Note first that
n R n R
dom(s,) =a U YUf) =Ud =
j=1 j=1

Now let x € U be arbitrary, and let j be the largest number in {1,...,n}
such that x € d;. Using Proposition 5.5.2 and the definition of V in (S4)*,
we see that

| ospx) ifxeg,
S”(x)_{sgj.(x) if x & ;.

If x € ¢j, then Sf, (x) = s(x) by the choice of f;, and if x & ¢;, then x € 3] \ ¢,
50 5¢,(x) = s(x) by assumption (3). O

The above lemma exactly enables us to prove surjectivity of ¢: it is now an
application of compactness, as follows.

Proposition 5.5.4. The function ¢ : S — (S,)* is surjective, and in particular
it is a morphism of SDL.

Proof. Let s € (S4)*, so s is a continuous section over a compact open
downset U. For each x € U, we have s(x) € (S:)x = (S§/~x)!, so we
can pick ay € S such that s(x) = [ay]~,, and define

Ty o= s = sa |l = {y € U] s(y) = [ax]~,} = s~ (im(sq,)) N UL.

Note that Ty is open in X, because s is continuous, im(sax) isopenin S,, and
Uisopenin X. Since x € Ty, there exist ¢y, dx € Ssuchthatx € dy\ ¢ C Ty,
where we may assume without loss of generality that ¢, C d,. We now have

uc J\&)clJncuy,
xel xel
so equality holds throughout. Since U is compact, there exist elements
x1,...,X; € Usuchthat U = U, (5;1 \ Cx;). We will write ¢; and d; for cy,
and d,,, respectively. Note that, foreachi € {1,...,n}, wehave c? \G C Ty,
SO S|dA,»\c Say, |7 A\ By Lemma 5.5.3, we geta & S such that s = s,, proving

that ¢ is surjective. For the “in particular” part, note that surjective homo-
morphisms are always proper. O
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Lemma 5.5.5. For each n € IN, the following holds. If a,b, cy,...,c, and
dy,...dy are elements of S such that:

1. foreachi e {1,...,n},& C d; C &

2. EZU?:N‘Z\@):E?

3. foreachi € {1,...,n}, (aNd;) Ve = (bAd;) Ve,
then a = b.

Proof. Forn = 0, we get thatd = @ = E, soa=0=">. Letn > 1, and sup-
pose the statement is proved for n — 1. Letcy,...,cy, dy,...d, be elements
of S satisfying the assumptions. Then in particular @ = (J! , &\l = Vi, d;,
so that [a]p = [V/_; d;]p. Therefore,

a=aAl (\n/dl) = \n/(a/\di).

i=1 i=1
Similarly, since b = Ur, d;, we get that b = (b Ady).
Letj € {1,...,n} be arbitrary. For i # j, defme aj := a N, bj :=bAcj,
dij := d; Acj, and ¢;; := ¢; Acj. Note that a; = b], and also that for each
i # j, we have c/l\] C Jl\] - L?]-. Moreover:
(ﬂ] A d,]) Vepj=(aNci A\ d; A C]) V (c; A C]) (definitions of aj, di,j and Ci,j)
ANd; A Cj) V (Ci AN C])

(

= (a (left normality)
= ((and;)Vei) Ncj

(

= (

(strong distributivity)

(bAd;) Vi) Ncj (assumption)
bAdiNcj) V(i Acj) (as above)
= (b] A\ di,j) \% Ci,j-

By the induction hypothesis, we thus conclude thata Ac; = a; = b; = b Ac;.
Now, to show a A dj =DbA d]-, we calculate:

aNd;=an(d;Vc) GRah)
= (andj)V(aAcj) (strong distributivity)
= (andj)V(bAc)) (aNci=bANcj)
= (andj)VeiV(bAc) (¢ Cb)
= (bAdj) VeV (bAc) (assumption)
(b/\d)\/(b/\c]) (¢ Cb)
=bA d] (as above)
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Now a = Vi_j(aAdj) = Vi_;(bAd;j) = b, as required. O

Proposition 5.5.6. The function ¢ : S — (Sx)* is injective.

Proof. Leta,b € S, and suppose that s, = s,. We then in particular have that
@ = dom(s,;) = dom(s,) = b. Foreach x € @, [a]~, = s,(x) = s(x) = [b]~,,
so by definition of ~, pick ¢y, dy € Ssuch that (a Ady) Vey = (bAdy) Vey,
and x € d, \ é. We thus get that the collection (dy \ ¢)yes is an open
cover of 4. Since 7 is compact, we can pick a finite subcover, indexed by
X1,...,X; € a. We will write ¢c; and d; for ¢y, and dy;, respectively. Without
loss of generality, we may assume that ¢; C &\l C 7 for each i, by replacing c;
by ¢; Ad; Aaand d; by d; A a, and checking that the new c; and d; still satisfy
the same properties. Now it follows from Lemma 5.5.5 that a = b. O

We have thus established that ¢ : S — (S,)* is an isomorphism in SDL, so:

Proposition 5.5.7. The contravariant functor (—)* : Sh(LPS) — SDL is es-
sentially surjective.

It now follows from Propositions 5.5.1 and 5.5.7 that (—)* is part of a dual
equivalence. This concludes the proof of our main theorem, Theorem 5.2.6.

Concluding remarks

It is a central fact in logic that every distributive lattice has a free Boolean
extension, or Booleanization, cf. Example 1.1.13 in Chapter 1. This fact is
at the base of the relationship between intuitionistic and Boolean logic. It
would be interesting to seek a non-commutative counterpart of this result.
Since the classical result is most transparently understood via duality, it is
likely that our duality would prove useful. Furthermore, a “skew Heyting
algebra” is a notion still needing to be properly defined. In a recent pa-
per [51] on Esakia’s work, Gehrke showed that Heyting algebras may be
understood as those distributive lattices for which the embedding in their
Booleanization has a right adjoint. This could provide a natural starting
point for the exploration of skew Heyting algebras.

A different natural non-commutative generalization of distributive lattices
is a class of inverse semigroups whose idempotents form a distributive lat-
tice. Recently, Stone duality has been generalized to this setting [101, 102,
103]. The most recent work in this direction [103] generalizes Stone’s dual-
ity between distributive lattices and spectral spaces to the context of inverse
semigroups. However, to the best of our knowledge, Priestley’s duality
for distributive lattices has not yet been generalized to inverse semigroups.
The results in this chapter might also be fruitfully applied to obtain such
a duality for a class of inverse semigroups. We leave this as an interesting
direction for future work.



Chapter 6. Distributive envelopes and
topological duality for lattices

In this chapter, we establish a topological duality for bounded lattices. The two
main features of our duality are that it generalizes Stone duality for bounded dis-
tributive lattices, and that the morphisms on either side are not the standard ones.
A positive consequence of the choice of morphisms is that those on the topological
side are functional. Towards obtaining the topological duality, we develop a uni-
versal construction which associates to an arbitrary lattice two distributive lattice
envelopes with a Galois connection between them. This is a modification of a con-
struction of the injective hull of a semilattice by Bruns and Lakser, adjusting their
concept of ‘admissibility’ to the finitary case. Finally, we show that the dual spaces
of the distributive envelopes of a lattice coincide with completions of quasi-uniform
spaces naturally associated with the lattice, thus giving a precise spatial meaning
to the distributive envelopes. This chapter is a modified version of the paper [64].

Topological duality for Boolean algebras [137] and distributive lattices [138]
is a useful tool for studying relational semantics for propositional logics.
Canonical extensions [84, 85, 56, 54] provide a way of looking at these
semantics algebraically. In the absence of a satisfactory topological dual-
ity, canonical extensions have been used [40] to treat relational semantics
for logics with lattice-based algebraic semantics. The relationship between
canonical extensions and topological dualities in the distributive case sug-
gests that canonical extensions should be taken into account when looking
for a topological duality for arbitrary bounded! lattices. The main aim of
this chapter is to investigate this line of research.

Several different approaches to topological duality for lattices exist in the
literature, starting from Urquhart [139]. Important contributions were made,
among others, by Hartung [78, 79], who connected Urquhart’s duality to
the Formal Concept Analysis [48] approach to lattices. However, as we
will show in Section 6.2 of this chapter, a space which occurs in Hartung’s
duality can be rather ill-behaved. In particular, such a space need not be
sober, and therefore it need not occur as the Stone dual space of any dis-
tributive lattice. By contrast, the spaces that occur in the duality developed
in this chapter are Stone dual spaces of certain distributive lattices that are
naturally associated to the given lattice. In topological duality for lattices

1From here on, we will adopt the convention that all lattices considered in this chapter are
bounded.

123
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[79], the morphisms in the dual category are necessarily relational rather
than functional. In this chapter, we exhibit a class of lattice morphisms, the
‘admissible homomorphisms’, for which the morphisms in the dual cate-
gory can still be functional. However, the topological charaterization of
the dual category is still rather involved. In the last section of this chapter,
we therefore propose a different spatial approach to lattices in the form of
quasi-uniform spaces.

Outline of the chapter. We first develop a relevant piece of order theory
that may be of independent interest. The ideas that play a role here origi-
nate with the construction of the injective hull of a semilattice [19], which
is a frame. In Section 6.1, we recast this construction in the finitary setting
to obtain a construction of a pair of distributive lattices from a given lat-
tice, which we shall call the distributive envelopes of the lattice. Moreover,
as we will also see in Section 6.1, these two distributive envelopes corre-
spond to the meet- and join-semilattice-reducts of the lattice of departure
and are linked by a Galois connection whose lattice of Galois-closed sets is
isomorphic to the original lattice. In Section 6.2, we then use Stone-Priestley
duality for distributive lattices [138, 127] and the theory of canonical exten-
sions to find an appropriate category dual to the category of lattices, using
this representation of a lattice as a pair of distributive lattices with a Galois
connection between them. Particular attention is devoted to morphisms;
the algebraic results from Section 6.1 will guide us towards a notion of ‘ad-
missible morphism’” between lattices, which have the property that their
topological duals are functional. Finally, in Section 6.3, we will propose
quasi-uniform spaces as an alternative to topology for studying set repre-
sentations of lattices.

6.1. Distributive envelopes

In this section we introduce the distributive envelopes D"*(L) and D" (L) of
a lattice L. After giving the universal property that defines the envelopes,
we will give both a point-free and a point-set construction of it, and inves-
tigate its categorical properties. A lattice has two semilattice reducts, each
of which gives rise to a corresponding distributive envelope. These two
distributive envelopes of a lattice are linked by a Galois connection, which
enables one to recover the original lattice L. Some of the results in this
section can be seen as finitary versions of the results on injective hulls of
semilattices of Bruns and Lakser [19]. We will relate our results to theirs in
Remark 6.1.15. However, the reader who is not familiar with [19] should be
able to read this section independently. The following definition is central;
it is the finitary version of “admissibility” in [19].
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Definition 6.1.1. Let L be a lattice. A finite subset M C L is join-admissible if
its join distributes over all meets with elements from L, i.e., if, foralla € L,

aAN\/ M= \/ (anm).

meM

We say that a function f : L1 — Ly between lattices preserves admissible joins
if, for each finite join-admissible set M C L1, wehave f(\/ M) = V,,em f(m).

Note that a lattice is distributive if, and only if, all finite subsets are join-
admissible.

Definition 6.1.2. Let L be a lattice. An embedding 5/ : L < D”(L) of L
into a distributive lattice D"*(L) which preserves finite meets and admis-
sible joins is called a distributive N-envelope of L if it satisfies the following
universal property:

For any function f : L — D into a distributive lattice D that preserves

finite meets and admissible joins, there exists a unique lattice homomorphism

f:DL) — D such that f oy} = f, i.e., the following diagram commutes:

A
L D(L)

Xﬂf
D

The definition of the distributive \/-envelope, DV (L), of L is order dual, cf.
Remark 6.1.16.

Let us give some intuition for the above definitions. The join-admissible
subsets of L are those subsets whose joins ‘are already distributive’ in L. A
distributive A-envelope of a lattice L is a universal solution to the question
of embedding L as a A-semilattice into a distributive lattice while preserv-
ing all admissible joins. Note that a join that is not admissible can not be
preserved by any A-embedding into a distributive lattice; in this sense, a
distributive A-envelope ‘adds as few joins as possible’ to make L distribu-
tive.

The main aim of this section is to show that the distributive A-envelope of a
lattice always exists (Theorem 6.1.4); it is clearly unique up to isomorphism.
The same results of course hold for the distributive V-envelope. In proving
these theorems, two different representations of D’ (L) will be useful, one
is point-free, the other uses the set of ‘points’ J*°(L?) of the canonical ex-
tension of L. We first give the point-free construction of the distributive
A-envelope D(L) of L. To construct D”*(L), we want to ‘add joins’ to L.
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This can of course be done with ideals. In the case of D’ (L) the required
ideals will be closed under admissible joins. We thus define “a-ideals” as
follows.

Definition 6.1.3. A subset I C L is called an a-ideal? if (i) I is a downset,
ie,ifaeland b <athenb € I, and (ii) I is closed under admissible joins,
ie., if M C I isjoin-admissible, then \/ I € A.

Note that any lattice ideal is in particular an a-ideal. In the case of a dis-
tributive lattice, the lattice ideals and a-ideals coincide. Moreover, the set
of all a-ideals of a lattice is a closure system: any intersection of a-ideals is
again an a-ideal. Therefore, for any subset T of a lattice, there exists a small-
est a-ideal containing T. We will denote this a-ideal by (T),; and call it the
a-ideal generated by T. As usual, we say that an a-ideal I is finitely generated
if there is a finite set T such that I = (T),;. If L is a lattice, we denote by
1] the map which sends a lattice element a4 € L to the finitely generated
a-ideal (a),;, which coincides with the downset generated by a. We now set
out to prove the following.

Theorem 6.1.4. Let L be a lattice. The map 1" from L to the partially ordered set
of finitely generated a-ideals of L is a distributive N-envelope of L.

This theorem can be proved by adopting the proof of [19, Theorem 2]. We
will give an alternative proof that uses the canonical extension. The plan
of our proof is as follows. In Lemmas 6.1.5 and 6.1.6, we characterize join-
admissibility and finitely generated a-ideals using the canonical extension.
Using these lemmas, we show that the finitely generated a-ideals form a
distributive lattice (Proposition 6.1.7), and then prove Theorem 6.1.4. We
refer to Section 1.2 in Chapter 1 for preliminaries on canonical extensions.
Recall that in the canonical extension of a distributive lattice, completely
join-irreducible elements are completely join-prime. The following lemma
shows that, in the canonical extension of any lattice, a set is join-admissible
if, and only if, the completely join-irreducibles still behave as completely
join-primes with respect to the join of that set.

Lemma 6.1.5. Let L be a lattice and M C L a finite subset. The following are
equivalent:

1. The set M is join-admissible;

2. Forany x € J®(L%), if x < \/ M, then x < m for some m € M.

2 As an anonymous referee pointed out, this definition is a special case of a Z-join ideal in
the sense of, e.g., [44]. It would be interesting to see how the results in this section relate to
those in [44].
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Proof. For (1) = (2), suppose that M is join-admissible, and let x € J*(L%)
be such that x < \/ M. Define x’ := \/,,,cp1(x A m). It is obvious that x" < x.
We show that x < x’. Let y be an ideal element of L9 such that ¥’ < y. Then,
for each m € M, we have x Am < y. By the compactness property of the
canonical extension, there exists a,, € L such that x < a,; and a,, Am < y.
Let a := A,,epm am- Since M is join-admissible, we get

x<aAN\/M=\/ (anm) < \/ (amAm)<y.
meM meM

Since y was an arbitrary ideal element above x’, by one of the equivalent
properties of denseness ([54, Lemma 2.4]) we conclude that x < x’. So
x = x' = Vyem(x Am). Since x is join-irreducible, we get x = x A m for
some m € M, so x < m. For (2) = (1), let a € L be arbitrary. We only need
to show that a AV M < \/,,cp(a Am) holds in L; the other inequality is
obvious. We will show that the inequality holds in L and use that L — L°
is an embedding. Let x € J®(L%) such that x < a AV M. By (2), pick
m € M such that x < m. Then x < a A m, which is below \/,,cp(a A m).
Since x € J°(L?) was arbitrary, we conclude that a A \V M < \/,,,cpr(a Am),
using the fact that the canonical extension is \/-generated by J*(L°) (Propo-
sition 1.2.4 in Chapter 1). O

Lemma 6.1.5 will be our main tool in the proof of Theorem 6.1.4. It is a
typical example of the usefulness of canonical extensions: one can formu-
late an algebraic property (join-admissibility) in a spatial manner (using the
‘points’, i.e., completely join-irreducibles, of the canonical extension). Note
that the proof of Lemma 6.1.5 goes through without the restriction that M
is finite, if one extends the definition of join-admissibility to include infinite
sets. We will not expand on this point here, because we will only need the
result for finite sets, but we merely note that this observation can be used
to give an alternative proof of the results in [19].

Foranya € L, we define@ := {x € J®(L%) : x < a}. Note thata Ab =aND,
for any a,b € L. Lemma 6.1.5 says that M is join-admissible if, and only
if, Y M = Umem M. We can use these observations to obtain the following
characterization of the a-ideal generated by a finite subset.

Lemma 6.1.6. Let L be a lattice, T C L a finite subset and b € L. The following
are equivalent:

1. be <T>ai;
2.5 C Uper

3. There exists a finite join-admissible set M C |T such that b = \/ M.
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Proof. For (1) implies (2), note that I := {b € L : b C Uyerd} is an a-
ideal that contains T: it is clearly a downset, and it is closed under admis-
sible joins, using Lemma 6.1.5. Therefore, (T),; C I. For (2) implies (3), let
M :={bAa|ae T}. Wewill show that b = \/ M and M is join-admissible.
Note that \/ M < b, so \m Cbh. Using (2), we also get:

b=bnJa=JGna)=bra= |J mcC\/MCh

acT acT aeT meM

Therefore, equality holds throughout, and in particular we have thatb = \/ M
and U,,epm M = V M, so that M is join-admissible by Lemma 6.1.5. The di-
rection (3) implies (1) is clear from the definition of a-ideal. O

Now, towards proving Theorem 6.1.4, we first show that the finitely gen-
erated a-ideals form a distributive sublattice of the complete lattice of all
a-ideals.

Proposition 6.1.7. Let L be an arbitrary lattice, and let T and U be finite subsets
of L. Then

(TyaiN (U = {tAu|t€T,ucl),.

In particular, the intersection of two finitely generated a-ideals is again finitely
generated, and the collection of finitely generated a-ideals of L forms a distributive
lattice.

Proof. By Lemma 6.1.6, we have that

<T>aim<u>ai:{bel"zg <UT>H<U LA[)}

teT uel

Note that

() (2 0 0

teT uel teT,ucl teT,ucl

Hence, (T) i N (U)si = {b € L|b C Ueryeu At} = (tAult € T,u € Uy,
again by Lemma 6.1.6. Note that the set of generators for (T), N (U),;
is in particular finite. To prove distributivity, let T, U, Uy be finite sub-
sets of L. Note that the a-ideal (T),; N ((Uy)4 V (U2),i) is generated by
{tAu|t e T,ue U Ul,}. Each of these generators is either in (T) ,; N (Uy )
or (T), N (Uz)s. Therefore, (T), N ((Up)a V (Uz)si) is contained in
((T)ai N (U )ai) V ((T)gi N (Up),;), as required. O
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Proof of Theorem 6.1.4. We optimistically write D*(L) for the distributive lat-
tice of finitely generated a-ideals of L. Recall that 7] is the map which
sends a to (a),; = la. It is clear that ] is injective and preserves finite
meets. Let M be a finite join-admissible set. Then \/,,cpr 177 (m) = (M) ;.
By Lemma 6.1.6, we have b € (M),; if, and only if, b C Upepii. By
Lemma 6.1.5, we have ey = \/ M since M is join-admissible. We
conclude that \/,,cpr 771 (m) = 51 (\V M). Thus, 5" also preserves admis-
sible joins. It remains to show that it satisfies the universal property. Let
f + L — D be a function which preserves meets and admissible joins. If
g : D"(L) — D is a homomorphism such that g o 7' = f, then, for any
finite subset T C L, we have

§((T)ai) =g (\/ Wﬁ(ﬂ) =V sr (1) =\ f(t).

teT teT teT

Hence, there is at most one homomorphism ¢ : D"(L) — D satisfying
gonl = f. Let f : D"(L) — D be the function defined for a finite subset
T C Lby

FUDw) =\ fb).

teT

We show that fis a well-defined homomorphism. For well-definedness,
suppose that (T),; = (U),; for some finite subsets T,U C L. Let u € U be
arbitrary. We then have u € (T),;. By Lemma 6.1.6, u = \/ M for some finite
join-admissible M C |T. Using that f preserves admissible joins and order,
we get

fy=f (VM) =V fm) <V f(0).

meM teT

Since u € U was arbitrary, we have shown that \/,,c;; f(#) < Vet f(¢). The
proof of the other inequality is the same.  We conclude that
Vier f(t) = Vuey f(u), so f is well-defined. It is clear that f o n = f.
In particular, fpreserves 0 and 1, since f does. It remains to show that
fpreserves Vand A. Let T,U C L be finite subsets. Since the a-ideal
(T)ai V (U),; is generated by T U U, we get

FUDavWa) =\ flo)=V f(HOVV flu)=F(T)a) vV F({U)a)-

veTul teT uel

Using Proposition 6.1.7 and the assumptions that D is distributive and f is
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meet-preserving, we have

FUD) A W)=\ fltAu)

teT,uel

=V (fOAf@w)

teT,uel

=V AV fu)=F(Ta) Af({Wa). O

teT uel

In what follows, it will be useful to know that the unique lift of an injective
map to the distributive envelope is still injective.

Proposition 6.1.8. Let L be a lattice, D a distributive lattice, and f : L — D a
function which preserves finite meets and admissible joins. If f is injective, then
the unique extension f : D(L) — D is injective.

Proof. Note that f is order reflecting, since f is meet-preserving and injec-

o~ o~

tive. Suppose that f((U),;) < f((T)4i). We need to show that (U),; C (T),;-

'~ o~

Let u € U be arbitrary. Then f(u) < f((U)z) < f({T)ai) = Vier f(t). For
any a € L, we then have

flanu)=flanu) A\ f(t) =\ (flanu) Af(t))

teT teT
= \/ flanunt) §f<\/(aAuAt)>.
teT teT

Since f is order reflecting, we thus get a Au < \/;cr(a A u At). Since the
other inequality is clear, we get

ahu=\/(anunt). (6.1)

teT
In particular, putting a = 1, we see that u = \/;c1(u A t), and equation (6.1)
then says that {u At | t € T} is join-admissible. Hence, u € (T),;.. We
conclude that U C (T),;, and therefore (U),; C (T);. O

The following characterisation of the distributive envelope now follows
easily.
Corollary 6.1.9. Let L be a lattice. If D is a distributive lattice and f : L — D is

an injective function that preserves meets and admissible joins, and the image of f
join-generates D, then D is isomorphic to D (L) via the isomorphism f.

Proof. The homomorphism ]?is injective by Proposition 6.1.8. It is surjective
because f(L) is join-dense in D and f(D"(L)) = {V f(T) | T C L}, by the
construction of f in the proof of Theorem 6.1.4. O
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Using this corollary, we obtain the following alternative presentation of the
distributive envelope D" (L).

Corollary 6.1.10. Let L be a lattice. Let ¢ be the function which sends a finitely
generated a-ideal I = (T),; to the set J,er @. Then ¢ is a well-defined isomor-
phism between D" (L) and the sublattice of P(J*(L°)) that is generated by the
collection {a | a € L}.

Proof. Let f be the function that sends a2 € L toa € P(J®(L%)). By the
remarks preceding Lemma 6.1.6, f preserves meets and admissible joins.
By Proposition 1.2.4, f is injective. Now apply Corollary 6.1.9, noting that

f=e9 O

We now investigate the categorical properties of the distributive A-envelope.
In particular, we will deduce that the assignment L — D”(L) extends to
an adjunction between categories. We first define the appropriate cate-
gories. We denote by DL the category of distributive lattices with homo-
morphisms. The relevant category of lattices is defined as follows.

Definition 6.1.11. We say that a function f : L; — L between lattices is
a join-admissible morphism if f preserves finite meets and admissible joins,
and, for any join-admissible set M C L;, f(M) is join-admissible. We
denote by L,y the category of lattices with join-admissible morphisms be-
tween them. (The reader may verify that L,y is indeed a category.)

Note that if the lattice L, is distributive, then the condition that f sends join-
admissible sets to join-admissible sets is vacuously true. This explains why
we did not need to state this condition in the defining property of D*(L).
However, the following example shows that, in general, the condition in
Definition 6.1.11 that f sends join-admissible sets to join-admissible sets
can not be omitted.

Example 6.1.12. It is not the case that if f : L1 — Lyand g: Ly — Lj preserve
meets and admissible joins, then their composition gf preserves admissible joins.
Let L; be the Boolean algebra with 2 atoms, let Ly be the three-element
antichain with 0 and 1 adjoined, and let L3 be the Boolean algebra with 3
atoms, as in Figure 6.1. Observe that L3 is the distributive envelope of L,
via the map g which sends x; to x3, for x € {a,b,c}. Let f : L1 — L be
the homomorphism defined by f(x1) = x, for x € {a,b}. The composi-
tion ¢f does not preserve (admissible) joins: gf (a1 V b1) = gf(1) = 1, but
gf(a1) vV gf(by) = a3V by # 1. Note that f, despite it being a homomor-
phism, does not send join-admissible sets to join-admissible sets: the image
of {ay, b1} is {a, bp }, which is not join-admissible in L;.
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1
1 1
a by a by a3 b3
0 0 0
Ly Ly L3

Figure 6.1: The lattices L1, Ly and L3.

However, the following proposition shows that for surjective maps, the con-
dition that f sends join-admissible sets to join-admissible sets can be omit-
ted. It was already observed by Urquhart [139] that surjective maps are
well-behaved for duality, and accordingly our duality in Section 6.2 will
also include all surjective lattice homomorphisms.

Proposition 6.1.13. Suppose f : Ly — Ly is a surjective function which pre-
serves finite meets and admissible joins. Then f sends join-admissible sets to join-
admissible sets, and therefore f is a join-admissible morphism.

Proof. Suppose that M C L is a join-admissible set. To show that f(M) is
join-admissible, first let a € L; be arbitrary. Note that it follows from the
definition of join-admissibility that {a A m | m € M} is also join-admissible
in Ly. Using that f preserves meets and admissible joins, we get:

fayn f(m)=f(aA\/M)=f< v <aAm>) _\ (Fl@) A f(m))

meM meM meM

Since f is surjective, any b € L, is of the form b = f(a) for some a € L;.
Hence, f(M) is join-admissible. O

Note that, if L1 and L, are distributive, then join-admissible morphisms
from L; to Lp are exactly bounded lattice homomorphisms. Hence, we have
a full inclusion of categories I N DL < L,y. The following is now a conse-
quence of the universal property of the distributive envelope.

Corollary 6.1.14. The functor D" : Loy — DL, which sends L to D"(L) and
a join-admissible morphism f : Ly — Ly to the unique homomorphic extension of
ng, o f + L1 = D"(Ly), is left adjoint to I" : DL < Lay and 5" is the unit of
the adjunction. Moreover, the counit € : D" o I — 1py is an isomorphism.

Remark 6.1.15. We compare our results in this section so far to those of
Bruns and Lakser [19]. The equivalence of (1) and (3) in Lemma 6.1.6 is
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very similar to the statement of Lemma 3 in [19]. Our Corollary 6.1.9 is a
finitary version of the characterisation in Corollary 2 of [19]. The fact that
D’ is an adjoint to a full inclusion can also be seen as a finitary analogue of
the result of [19] that their construction provides the injective hull of a meet-
semilattice. Note that our construction of D”*(L) could also be applied to
the situation where L is only a meet-semilattice, if we modify our definition
of join-admissible sets to require that the relevant joins exist in L. The in-
jective hull of L that was constructed in [19] can now be retrieved from our
construction by taking the free directedly complete poset (dcpo) over the
distributive lattice D”*(L). This is an instance of the general phenomenon
that frame constructions may be seen as a finitary construction followed by
a dcpo construction, cf. [87].

Remark 6.1.16. We outline the order-dual version of the construction given
above for later reference. A finite subset M C L is meet-admissible if, for all
a € M, wehave aV AM = A,ecm(aV m). The distributive V-envelope is
defined as in Definition 6.1.2, interchanging the words ‘join” and ‘meet’ ev-
erywhere in the definition. An a-filter is an upset which is closed under ad-
missible meets. The distributive V-envelope can be realized as the poset of
finitely generated a-filters of L, ordered by reverse inclusion. The distribu-
tive V-envelope is also anti-isomorphic to the sublattice of P(M>(L?)) that
is generated by the sets

i:={ye M |a<y},

by sending the a-filter generated by a finite set T to J,c1 4. Note that the
order on a-filters has to be taken to be the reverse inclusion order, to en-
sure that the unit embedding 7, of the adjunction will be order-preserving.
On the other hand, the order in P(M®(L?)) is the inclusion order, which
explains why DY (L) is anti-isomorphic to a sublattice of P(M*®(L?)). We
say that f : Ly — Ly is a meet-admissible morphism if it preserves finite joins,
admissible meets, and sends meet-admissible sets to meet-admissible sets.
Then DV is a functor from the category L, to DL which is left adjoint to
the full and faithful functor IV : DL — L. We denote the unit of the ad-
junction by 7V : 1p,, — IVDV. Finally, DV (L) is the (up to isomorphism)
unique distributive meet-dense extension of L which preserves finite joins
and admissible meets.

We end this section by examining additional structure which links the two
distributive envelopes D" (L) and D"V (L), and enables us to retrieve L from
the lattices D" (L) and DV(L). Recall from Section 2.4 in Chapter 2 that a
tuple (X, Y, R), where X and Y are setsand R C X X Y is a relation, is called
a polarity and naturally induces a Galois connection® u : P(X) <= P(Y) : .

3We use the term Galois connection [14] for what is sometimes called a contravariant adjunc-
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Let up : P(J®(L%)) = P(M*®(L?)) : I be the Galois connection associated
to the polarity (J°(L%), M®(L°),<,s), that is,

u (V)= {y e ML) |Vx e Vix <y} (VC (L),

LW):={xe ™) |VWyeW:x<y} (WCM®(L)).

Note that if V = 4 for some a € L, then uy (V) = u(a) = 4. Recall from
Corollary 6.1.10 that the distributive lattice D" (L) is isomorphic to a sub-
lattice of P(J*(L?)), and, by Remark 6.1.16, DV (L)°P is isomorphic to a
sublattice of P(M*®(L?%)).

Proposition 6.1.17. For any lattice L, the maps uy, and I} restrict to a Galois
connection up : D(L) < DV(L)°P : I, whose lattice of Galois-closed elements
is isomorphic to L.

N.B. The restricted Galois connection in this proposition is between D" (L)
and the order dual of DV (L). Therefore, it is also a (covariant) adjunction
between D\ (L) and DV (L).

Proof. The isomorphic copy of D" (L) in P(J*(L?)) consists of finite unions
of sets of the form 7. If T C L, then we have

ur, (U ﬁ) = m a= }/,
acT acT

where t := \/ T. From this, it follows that u; (D”(L)) C DY (L), and the

analogous statement for I}, is proved similarly. The lattice of Galois-closed

elements under this adjunction is both isomorphic to the image of u; in

DV(L) and the image of I} in D”*(L). Both of these lattices are clearly iso-

morphic to L. O

In the presentation of D”(L) and D" (L) as finitely generated a-ideals and
a-filters, the maps uy and I} act as follows. Given an a-ideal I which is
generated by a finite set T C L, uy(I) is the principal a-filter generated by
\/ T. Conversely, given an a-filter F which is generated by a finite set S C L,
IL.(F) is the principal a-ideal generated by A S.

In light of Proposition 6.1.17, we can combine D" and D" to obtain a single
functor, D, into a category of adjoint pairs between distributive lattices. On
objects, this functor D sends a lattice L to the pair uy : D’(L) <= DV(L) : I
(see Proposition 6.1.17 above). For the morphisms in the domain category

tion, i.e., a pair of order-preserving functions u : P = Q : I between posets satisfying idg < ul
and idp < [u. We reserve the word adjunction for the covariant case. Both for a Galois connec-
tion and for an adjunction, we call Galois-closed those elements p € P such that lu(p) = p, and
those g € Q such that ul(q) = q.
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of D, we take the intersection of the set of morphisms in L,y and the set
of morphisms in L. This intersection is defined directly in the following
definition.

Definition 6.1.18. A function f : L — M between lattices is an admissible
homomorphism if it is a lattice homomorphism which sends join-admissible
subsets of L to join-admissible subsets of M and meet-admissible subsets of
L to meet-admissible subsets of M. We denote by L, the category of lattices
with admissible homomorphisms.

Indeed, f is an admissible homomorphism if, and only if, it is a morphism
both in Lay and in Las. Any homomorphism whose codomain is a dis-
tributive lattice is admissible. Also, any surjective homomorphism between
arbitrary lattices is admissible, by Proposition 6.1.13. This may be the un-
derlying reason for the fact that both surjective homomorphisms and mor-
phisms whose codomain is distributive have proven to be ‘easier’ cases in
the existing literature on lattice duality (see, e.g., [139, 78]). Of course, not
all lattice homomorphisms are admissible, cf. Example 6.1.12 above. In the
next section, we will develop a topological duality for the category L,.

We end this section with a historical remark. The first construction of a
canonical extension for lattices (although lacking an abstract characteriza-
tion) was given in [77]. This construction depended on the fact that any
lattice occurs as the Galois-closed sets of some Galois connection. In this
section we have given a ‘canonical’ choice for this Galois connection. We
will leave the precise statement of this last sentence to future work; also see
the concluding section of this chapter.

6.2. Topological duality

In this section, we show how the above results can be applied to the topo-
logical representation theory of lattices. First, we will discuss how the ex-
isting topological dualities for lattices by Urquhart [139] and Hartung [78]
relate to canonical extensions. We subsequently exploit this perspective on
duality to obtain examples of lattices for which Hartung’s dual space is not
sober, or does not have a spectral soberification (Examples 6.2.1 and 6.2.2,
respectively). The rest of the section will be devoted to obtaining an alter-
native topological duality for the category of lattices L,. In our duality, the
spaces occurring in the dual category will be spectral.

As already remarked in [54, Remark 2.10], the canonical extension can be
used to obtain the topological polarity in Hartung’s duality for lattices [78].
We now briefly recall how this works. As is proved in [54, Lemma 3.4],
the set J°(L?) is in a natural bijection with the set of filters F which are
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maximally disjoint from some ideal I, and the set M®(L?) is in a natural bi-
jection with the set of ideals which are maximally disjoint from some filter
F. These are exactly the sets used by Hartung [78] in his topological repre-
sentation for lattices. The topologies defined in [78] can be recovered from
the embedding L < L?, as follows (cf. Figure 6.2).

Figure 6.2: Topology from the embedding of a lattice L into its canonical
extension L.

For a € L we define @ := |anNJ®(L°) and & := ta N M>®(L%). Let 7/
be the topology on J®(L%) given by taking {@ : a € L} as a subbasis
for the closed sets. Let ™ be the topology on M*(L%) given by taking
{@ : a € L} as a subbasis for the closed sets. Finally, let R; be the rela-
tion defined by x Ry y if, and only if, x <;s y. This topological polarity
((J°(L9), 7)), (M®(L%), ™), Ry) is now exactly (isomorphic to) Hartung’s
topological polarity K™ (L) in [78, Definition 2.1.6].

Before Hartung, Urquhart [139] had already defined the dual structure of a
lattice to be a doubly ordered topological space (Z, T, <1, <) whose points
are maximal filter-ideal pairs (F,I). We briefly outline how this structure
can be obtained from the canonical extension. Let P be the subset of
J°(L%) x M*(L?) consisting of pairs (x,y) such that x %;; y, i.e., P is the
set-theoretic complement of the relation Ry in Hartung’s polarity. Then
P inherits the subspace topology from the product topology ©/ x ™ on
J®(L%) x M*®(L?). We define an order < on Pby (x,y) =< (x/,y/) iff x > x’
and y <;s v/; in other words, < is the restriction of the product of the dual
order and the usual order of L°. Urquhart’s space (Z, T) then corresponds
to the subspace of <-maximal points of P, and the orders <; and <, corre-
spond to the projections of the order =< onto the first and second coordinate,
respectively.

In the following two examples, we prove that the spaces which occur in
Hartung’s duality may lack the properties of sobriety and arithmeticity (the
fact that intersections of compact-opens are compact) that Stone dual spaces
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=

Figure 6.3: The lattice L, a countable antichain with top and bottom.

of distributive lattices always have.

Example 6.2.1 (A lattice for which Hartung's dual topology is not sober). Let
L be a countable antichain with top and bottom, as depicted in Figure 6.3.
One may easily show that id : L — L is a canonical extension, so L = L.
The set J*(L) is the countable antichain (as is the set M*®(L)). Note that the
topology 7/ on J*(L) is the cofinite topology on a countable set, which is
not sober: the entire space is itself a closed irreducible subset which is not
the closure of a point. Also note that if one instead would define a topology
on [*(L) by taking the sets @, for a € L, to be open, instead of closed, then
one obtains the discrete topology on J*°(L), which is not compact. O

In light of the above example, one may wonder whether the soberification
of the space (J*(L),7/) might have better properties, and in particular
whether it will be spectral. However, the following example shows that
this is not always the case, since the frame of opens of the topological space
(J*(L), ') in the following example fails to be arithmetic: intersections of
compact-open sets are not necessarily compact.

K < K°

Figure 6.4: The lattice K, for which (J*(K?), /) is not spectral.

Example 6.2.2 (A lattice for which Hartung's dual topology is not arithmetic).
Consider the lattice K depicted in Figure 6.4. In this figure, the elements
of the original lattice K are drawn as filled dots, and the three additional
elements 4, b and ¢ of the canonical extension K° are drawn as unfilled dots.
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The set J°(K®) is {b;,c;,z; | i > 0} U {b,c}. Note that (by) and (¢;)° are
compact open sets in Hartung’s topology /. However, their intersection is
not compact: {(a,)};, is an open cover of (bo)* N (&) = {z : i > 0}
with no finite subcover. O

The above examples indicate that the spaces obtained in Hartung’s duality
can be badly behaved. In particular, they do not fit into the framework
of the duality between sober spaces and spatial frames (cf. Section 1.2 in
Chapter 1), and even their soberifications may fail to be the Stone duals of
any distributive lattice.

In the remainder of this section, we combine the facts from Section 6.1 with
the existing Stone-Priestley duality for distributive lattices to obtain a du-
ality for a category of lattices with admissible homomorphisms (see Defini-
tion 6.1.18 below). Since the join-admissible morphisms are exactly the mor-
phisms which can be lifted to homomorphisms between the D”*-envelopes,
these morphisms also correspond exactly to the lattice morphisms which
have functional duals between the X-sets of the dual polarities; the same
remark applies to meet-admissible morphisms and the Y-sets of the dual
polarities. The duals of admissible morphisms will be pairs of functions;
one function being the dual of the ‘join-admissible part” of the morphism,
the other being the dual of the ‘meet-admissible part” of the morphism.

We will now first define an auxiliary category of ‘doubly dense adjoint pairs
between distributive lattices’ (daDL) which has the following two features:

1. The category L, can be embedded into daDL as a full subcategory
(Proposition 6.2.4);

2. There is a natural Stone-type duality for daDL (Theorem 6.2.13).

We will then give a dual characterization of the ‘special’ objects in daDL
which are in the image of the embedding of L, from (1), calling these dual
objects tight (cf. Definition 6.2.18). The restriction of the natural Stone-type
duality (2) will then yield the main result of this section: a topological du-
ality for lattices with admissible homomorphisms (Theorem 6.2.19).

Definition 6.2.3. We denote by aDL the category with:

e objects: tuples (D, E, f, g), where D and E are distributive lattices and
f:D S E: gis a pair of maps such that f is lower adjoint to g;

e morphisms: an aDL-morphism from (D1, Eq, f1,81) to (D2, E, f2,$2)
is a pair of homomorphisms h" : D1 — D, and h" : E; — E; such
that bV f; = foh" and h\gy = goh", i.e., both squares in the following
diagram commute:
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i4!
D "SE
f
hh Y
g2
D, "SE
f

We call an adjoint pair (D, E, f, g) doubly dense if both g(E) is join-dense in
D and f (D) is meet-dense in E. We denote by daDL the full subcategory of
aDL whose objects are doubly dense adjoint pairs.

Proposition 6.2.4. The category L, is equivalent to a full subcategory of daDL.
Proof. Let D : L, — daDL be the functor defined by sending:

e alattice L to D(L) := (D"(L),DV(L),u,l),

e anadmissible morphism : L1 — L; to the pair D(h) := (D"(h), DV (h)).

We show that D is a well-defined full and faithful functor. For objects, note
that D(L) is a doubly dense adjoint pair by Corollary 6.1.9 and Proposi-
tion 6.1.17 in the previous section. Let & : L; — Ly be an admissible
morphism. We need to show that D(h) is a morphism of daDL, i.e., that
ur, o D"(h) = DY (h) our, and I, o DV(h) = D"(h) oly,. Since D"*(Ly) is
join-generated by the image of Ly, and both u, o D" (h) and DY (h) o uy, are
join-preserving, it suffices to note that the diagram commutes for elements
in the image of L;. This is done by the following diagram chase:

u, 0D (h) o, = uryonp, oh =y, oh = DY (k) onf, = DY (k) our, o,
where we have used that 7" is a natural transformation and that u o 7]* = 7.
The proof that I;, o DY (h) = D"(h) oIy, is similar.
It remains to show that the assignment i — D(h) is a bijection between
La(Ly, Ly) and daDL(D(Ly),D(Ly)). If (W",hY) : D(L1) — D(Lp) is a
daDL-morphism, then 7" maps lattice elements to lattice elements. That is,
the function h" o777 : L1 — D(Ly) maps into im(y7,) = im(Ir,), since

h" o Wﬁl =h"o lL1 our, ° 77£\1

— v A
=l oh’ oup onp,.

We may therefore define 1 : Ly — Ly to be the function ()" o h" o7\ .
Note that this function is equal to 17LV2)‘1 ol ony ,since
(71,) " onY oy, = () "ol oy, oly, o,
= (11,) " our, oh" o,
= (n,) toh"ong,
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where we have used that, for any lattice L, [ o) = ] and up o 7] = 1.
So, since (1,) " oh oy =h = (ny,) "' oh¥ o) ,itis clear that h is a ho-
momorphism, since the left-hand-side preserves A and the right-hand-side
preserves V. It remains to show that /1 is admissible, i.e., that & sends join-
admissible subsets to join-admissible subsets, and meet-admissible sub-
sets to meet-admissible subsets. Note that, by the adjunction in Corol-
lary 6.1.14, if a function k : L — D admits a homomorphic extension
k:DML) = D, thenkis a join-admissible morphism, since it is equal to
the composite ko n{". In particular, the morphism 7 fz o h is join-admissible,
its homomorphic extension being h”. It follows from this that / sends join-
admissible subsets to join-admissible subsets, since join-admissible subsets
are the only subsets whose join is preserved by ’7£\2' The proof that h pre-
serves meet-admissible subsets is similar. Now, since 1" onf = 77, ok,
we have that h* = D”\(h), since D" (h) was defined as the unique homo-
morphic extension of 77, o h, and similarly 1 = D" (h). We conclude that
(h",hY) = D(h), so h — D(h) is surjective. It is clear that if i # K, then
D"(h) # D"(h'), so D(h) # D(h'). Hence, the assignment h — D(h) is
bijective, as required. O

Example 6.2.5 (Not every object of daDL is the distributive envelope of a lat-
tice). Let D be any distributive lattice and consider the daDL
(Fv(D,N),FA(D,V), f,g), where F,(D, A) is the free join-semilattice gen-
erated by the meet-semilattice reduct of D viewed as a distributive lattice,
FA(D, V) is defined order dually, and f and g both are determined by send-
ing each generator to itself. Such a daDL is not of the form we are interested
in since the A- and V-envelopes of any distributive lattice both are equal to
the distributive lattice itself, since all joins are admissible.

The above example shows that the category L,, that we will be most inter-
ested in, is a proper subcategory of daDL. We start by giving a description
of the topological duals of the objects of daDL. To this end, let (D, E, f,g)
be a doubly dense adjoint pair. If X and Y are the dual Priestley spaces of
D and E respectively, then it is well-known that an adjunction (f, g) corre-
sponds to a relation R satisfying certain properties. In our current setting of
doubly dense adjoint pairs, it turns out that it suffices to consider the topolog-
ical reducts of the Priestley spaces X and Y (i.e., forgetting the order) and
the relation R between them. Both the Priestley orders of the spaces X and
Y and the adjunction (f, g) can be uniquely reconstructed from the relation
R, as we will prove shortly. The dual of a doubly dense adjoint pair will be
a totally separated compact polarity (TSCP), which will be a polarity (X,Y,R),
where X and Y are Boolean spaces and R is a relation from X to Y that
satisfies certain properties (see Definition 6.2.6 for the precise definition).
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We first fix some useful terminology for topological polarities, regarding
the closure and interior operators induced by a polarity, its closed and open
sets, and its associated quasi-orders. Let X and Y be sets and R C X x Y.
There is a closure operator () on X given by

S:={xe X|xR(.) CSR(.)} forS C X.

The subsets S of X satisfying S = S will be called R-closed. The R-closed
subsets of X form a lattice in which the meet is intersection and join is the
closure of the union. We also obtain an adjoint pair of maps:

]
PX)__ S P(Y)
¢
given by
¢S =SR(.)={yeY|3IxeSxRy}
and

OT = ()R(T)) = {x € X | ¥y € Y(xRy = y € T)}.

The relation with the closure operator on X is that S = (] S. Note also that
on points of X this yields a quasi-order given by

¥ <x < ¥R() CxR().
Similarly, on Y we obtain an interior operator
T°={yeY|3xe X [xRyandVy' € Y(xRy = ¢ € T)|} = 0T
and a quasi-order on Y given by
y<y < (ORy C (Ry.

The range of # is equal to the range of the interior operator, and we call the
sets in the range R-open. This collection of subsets of Y forms a lattice iso-
morphic to the lattice of R-closed subsets of X. In this incarnation, the join
is given by union whereas the meet is given by interior of the intersection.
Note that the R-closed subsets of X as well as the R-open subsets of Y all
are downsets in the induced quasi-orders.

We are now ready to define the objects which will be dual to doubly dense
adjoint pairs.

Definition 6.2.6. A topological polarity is a tuple (X,Y,R), where X and Y
are topological spaces and R is a relation. A compact polarity is a topological
polarity in which both X and Y are compact. A topological polarity is fotally
separated if it satisfies the following conditions:
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1. (R-separated) The quasi-orders induced by R on X and Y are partial
orders.

2. (R-operational) For each clopen downset U of X, the image ®U is
clopen in Y; For each clopen downset V of Y, the image IV is clopen
in X;

3. (Totally R-disconnected) For each x € X and each y € Y, if xRy does
not hold, then there exist clopensets U C Xand V C Y with ¢U =V
and OV = U, such thatx € Uandy ¢ V.

In what follows, we often abbreviate “totally separated compact polarity”
to TSCP.

Remark 6.2.7. In the definition of totally separated topological polarities,
the first property states that R separates the points of X as well as the
points of Y. The second property states that R yields operations between
the clopen downsets of X and of Y. Finally, the third property generalizes
total order disconnectedness, well known from Priestley duality, hence the
name total R-disconnectedness.

The following technical observation about total R-disconnectedness will be
useful in what follows.

Lemma 6.2.8. If a topological polarity (X, Y, R) is totally R-disconnected, then
the following hold:

o Ifx $ x then there exists U C X clopen and R-closed such that x € U
and x' & U.

o Ify' £ y then there exists V C Y clopen and R-open such that y € V
andy ¢ V.

Proof. Suppose that x” £ x. By definition of <, there exists y € Y such that
x'Ry and —(xRy). By total R-disconnectedness, there exist clopen U and V
such that €U =V, OV = U, x € Uand y ¢ V. We now have x’' ¢ U,
for otherwise we would get that y € €U = V. Since U = OV = e,
we get that U is R-closed, as required. The proof of the second property is
dual. O

Now, given a daDL (D, E, f, g), we call its dual polarity the tuple (X,Y,R),
where X and Y are the topological reducts of the Priestley dual spaces of D
and E, respectively (which are in particular compact), and R is the relation
defined, forx € X and y € Y, by

xRy < f(Fx) C Fy,
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where F; and F, are the prime filters corresponding to the points x and y, re-
spectively. Conversely, given a totally separated compact polarity (X, Y, R),
we call its dual adjoint pair the tuple (D, E, #,0J), where D and E are the lat-
tices of clopen downsets of X and Y in the induced orders, respectively, and
¢ and [ are the operations defined above (note that these operations are
indeed well-defined by Remark 6.2.7). Note that if L is a distributive lattice,
then its associated daDL is (L, L,id, id), which has dual polarity (X, X, <),
where (X, <) is the usual Priestley dual space of L. Thus, the above defini-
tion generalizes the definition of the Priestley dual space.

The following three propositions constitute the object part of our duality
for doubly dense adjoint pairs.

Proposition 6.2.9. If (D, E, f,g) is a doubly dense adjoint pair, then its dual
polarity (X, Y, R) is compact and totally separated.

Proof. Let (D, E, f, g) be a doubly dense adjoint pair, and let L be the lattice
which is isomorphic to both the image of g in D and to the image of f in
E. The dual polarity (X, Y, R) is compact because the dual Priestley spaces
of D and E are compact. For R-separation, suppose that x # 1" in X. We
need to show that xR(_) # x'R(_). Without loss of generality, pick d € D
such that d € Fy and d ¢ F,s. Since L is join-dense in D and Fy is a prime
filter, there exists a € L with a < d, such thata € F,. Note that a ¢ F, since
a<dandd ¢ Fy. It follows that f(a) & f(F): if we would have d’ € F,
such that f(a) = f(d'), then we would getd’ < ¢f(d") = gf(a) = a, contra-
dicting that a ¢ F,,. By the prime filter theorem, there exists a prime filter
y C E such that f(F,) C yand f(a) ¢ y. Since we do have f(a) € f(Fy),
it follows that x'Ry and —(xRy), so x'R(_) # xR(.), as required. The proof
that R induces a partial order on Y is similar. For R-operationality, it suf-
fices to observe that, for any d € D, we have d = dR(_) = ﬂj) and, for

any e € E, we have [Je = g(e). For total R-disconnectedness, suppose that
xRy does not hold. This means that f(F,) Z y, so there is d € D such that
d e xand f(d) ¢ y. Sinced < gf(d), we get gf(d) € x, so we may put
U:=gf(d)and V := f(d). O

Proposition 6.2.10. If (X, Y, R) is a totally separated compact polarity, then its
dual adjoint pair is doubly dense.

Proof. From what was stated in the preliminaries above, it is clear that we
get an adjoint pair between the lattices of clopen downsets. We need to
show that it is doubly dense. To this end, let U be a clopen downset of X.
We show that U is a finite union of clopen R-closed sets. First fix x € U. For
any x' ¢ U, we have that x’ £ x. By Lemma 6.2.8, pick a clopen R-closed
set Uy such that x € Uy and x” ¢ U,/. Doing this for all x’ ¢ U, we obtain
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a cover {US, } ¢ by clopen sets of the compact set U°. Therefore, there
exists a finite subcover {Uf}" ; of U°. Let us write Vy := Ni_; U;. We then
get that x € V, C U, and V is clopen and R-closed, since each of the U;
is. Doing this for all x € U, we get a cover {Uy },ex by clopen R-closed
sets of the compact set U, which has a finite subcover. This shows that U
is a finite union of clopen R-closed sets. The proof that clopen downsets
of Y are finite intersections of clopen R-open sets is dual; we leave it to the

reader. O

Proposition 6.2.11. Any totally separated compact polarity is isomorphic to its
double dual. More precisely, if (X,Y,R) is a TSCP, let (X',Y’,R") be the dual
polarity of the dual adjoint pair of (X,Y,R). Then there are homeomorphisms
¢: X — X', ¢ :Y = Y such that xRy if, and only if, p(x)R'p(y).

Proof. Note thatif (X,Y, R) is a TSCP, then X and Y with the induced orders
are Priestley spaces: total-order-disconnectedness follows from Lemma 6.2.8
and the fact, noted above, that R-closed and R-open sets are downsets in
the induced orders. Therefore, by Priestley duality we have homeomor-
phisms ¢ : X — X’ and ¢ : Y — Y, both given by sending points to their
neighbourhood filters of clopen downsets. It remains to show that ¢ and
 respect the relation R. By definition, we have x'R’y’ if, and only if, for
any clopen downset U in Fy/, the set #U is in F,s. Suppose that xRy, and
that U € F(,). Thenx € U, soy € UR(-), so ®U € Fy,). Conversely,
suppose that xRy does not hold. By total R-disconnectedness, pick a clopen
R-closed set U with x € U and y ¢ @U. This set U is a clopen downset
which witnesses that ¢(x)R'¢(y) does not hold. O

We can extend this object correspondence between daDL’s and TSCP’s to
a dual equivalence of categories. The appropriate morphisms in the cate-
gory of totally separated compact polarities are pairs of functions (sx, sy),
which are the Priestley duals of (1, 1"). The condition that morphisms in
daDL make two squares commute (see Definition 6.2.3) dualizes to back-
and-forth conditions on sx and sy, as in the following definition.

Definition 6.2.12. A morphism in the category TSCP of totally separated
compact polarities from (X1, Y1, Ry) to (Xp, Y2, Rp) is a pair (sx, sy) of con-
tinuous functions sy : X7 — X, and sy : Y7 — Y3, such that, for all x € Xy,
¥ eXy,yeY,y €Yo

(forth) If x Ry y, then sx(x) Rasy(y),
(®-back) If x' Ry sy(y), then there exists z € X; such that z Ry y and sx(z) < x/,

(O-back) Ifsx(x) Ryy/, then there exists w € Y; such thatx Ry wand y’ < sy(w).
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The conditions on these morphisms should look natural to readers who are
familiar with back-and-forth conditions in modal logic. More detailed back-
ground on how these conditions arise naturally from the theory of canonical
extensions can be found in [51, Section 5].

Theorem 6.2.13. The category daDL is dually equivalent to the category TSCP.

Proof. The hardest part of this theorem is the essential surjectivity of the
functor which assigns to a daDL its dual polarity. We proved this in Propo-
sition 6.2.11. One may then either check directly that the assignment which
sends a daDL-morphism (h”, ") to the pair (sx, sy) of Priestley dual func-
tions between the spaces in the dual polarities is a bijection between the
respective sets of morphisms, or refer to [51, Section 5] for a more concep-
tual proof that uses canonical extensions. O

In particular, combining Theorem 6.2.13 with Proposition 6.2.4, the cate-
gory L, of lattices with admissible homomorphisms is dually equivalent to
a full subcategory of TSCP. The task that now remains is to identify which
totally separated compact polarities arise as duals of doubly dense adjoint
pairs which are isomorphic to ones of the form (D"(L), DV(L),ur,1) for
some lattice L (not all doubly dense adjoint pairs are of this form; cf. Exam-
ple 6.2.5).

Givenany daDL (D, E, f, g), there is an associated lattice L = im(g) = im(f)
which embeds in D meet-preservingly and in E join-preservingly. We write
i:L < Dandj:L < E for the embeddings of L into D and E, respec-
tively. These images generate D and E, respectively, because of the double
denseness. However, the missing property is that i and j need not preserve
admissible joins and meets, cf. Example 6.2.5. We will now give a dual de-
scription of this property. To do so, we will use the canonical extension of
the adjunction f : D < E : ¢ and of the embeddings i and j. For the defini-
tion of canonical extensions of maps we refer to Section 4.2 in Chapter 4, in
particular equations (4.4)—(4.7). The definitions given there for distributive
lattices still apply to the setting of lattices in general, cf. [54, Section 4]. All
maps in our setting are either join- or meet-preserving, so that their o- and
rt-extensions coincide ([54, Lemma 4.4]). We therefore denote the unique
extension of a (join- or meet-preserving) map h by h’. Thus, we have maps
f:D S E g% i L% —» D%and j° : L’ — E°. For our dual characteri-
zation of double denseness, we will need the following basic fact, which is
essentially the content of Remark 5.5 in [54].

Proposition 6.2.14. Let f : D & E : g be an adjunction between distributive
lattices and let L be the lattice of Galois-closed elements. Then the following hold:

1. f0:D° = EC: g0 is an adjunction;
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2. The image of g° forms a complete \-subsemilattice of D® which is isomor-
phic, as a completion of L, to L?;

3. Theimage of f° forms a complete \/-subsemilattice of E° which is isomorphic,
as a completion of L, to L°.

Proof. Item (1) is a special case of Proposition 4.2.1 in Chapter 4, cf. also [54,
Prop. 6.6]. For (2), note first that the image of an upper adjoint between
complete lattices always forms a complete A-subsemilattice. To see that
the image of ¢° is isomorphic to L° as a completion of L, it suffices by the
uniqueness of canonical extensions (Theorem 1.2.3) to check that the natu-
ral embedding L < im(g°) (given by the composition L < D < D?) is
compact and dense. Neither of these properties is hard to verify. The proof
of item (3) is order-dual to (2). O

Let M be a finite subset of the lattice L. Recall that by Lemma 6.1.5, M is
join-admissible if, and only if, for each x € | °°(L‘5 ), we have x < \V M im-
plies x < m for some m € M. In order to translate this to a dual condition, it
is useful to get a dual characterization of the elements of J*(L?). In the fol-
lowing lemma, we will use the fact that the relation R can be alternatively
defined using the lifted operation f: regarding X as J*(D"(L)°) and Y as
J*(DY (L)), we have that xRy <= y < f°(x).

Lemma 6.2.15. Let (D,E,f,g) be a daDL, (X,Y,R) its dual polarity,
L = im(g) = im(f), withi: L < D and j: L < E the natural embeddings.
Then the following hold:

1. Forall x € J*(D?), there exists x' € F(L%) such that ®(x') = x
Forally € M*®(E?), there exists y' € I1(L°) such that °(y') = y.

2. Forall x € X = J®(D?), the following are equivalent:

(a) x €i°(J*(L%)),
(b) There exists y € Y such that xRy, and —(x'Ry) for all x' € X with
x' <

3. Forally € Y = J®(E?), the following are equivalent:

@ x(y) € P (M2(9)),
(b) There exists x € X such that xRy, and —(xRy') for all y' € Y with
vy >y
Proof. For item (1), let x € X = J®(D°). Then x € F(D?), so x is equal A F

for some filter F of D. For each d € F, since im(i) = im(g) is join-dense in
D, we may pick a finite subset S; C L such thatd = \/i(S;). Let us write ®
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for the set of choice functions F — Jycr Sy Then, by distributivity of D?,
we have

x= NF=A{ViSo) [de F} = { A i(o(d)) | p € ®}.

deF

Since x is completely join-irreducible in D?, we get that x = Agcpi(@(d))
for some ¢ € ®. Since i° is completely meet-preserving, x = i’ (Agcr ¢(d)).
The proof of the second statement in (1) is order-dual. For (2), first note
that the negation of (b) holds if, and only if, for all y € Y with y < f9(x)
there exists x' < x such that y < f°(x'). Since Y is \/-generating in E°, this
condition is in turn equivalent to f(x) < V., f2(x'). Since f° is lower
adjoint to g° by Proposition 6.2.14.1, we conclude that the negation of (b) is
equivalent to:

x<gof (\/{x'eXx'<x}>. (*)
D¢
Note that the right-hand-side of () is i’ (\/;s{v € (i®)~1(X) | ©¥(v) < x}),
using item (1). Now suppose that (b) does not hold and that x = i(u) for
some u € L°. We must have u < \/;s{v € (i%)"1(X) | i’(v) < x}, using
(%) and the fact that i is injective (cf. [54, Lemma 4.9]). It follows that u
is join-reducible. Conversely, suppose that x € X \ i’(J®(L%)). By item
(1), pick u € F(L°) such that i’(u) = x. Since u is join-reducible, we have
u = \ys{v € J®(L°) | v < u}. Applying i’ to both sides of this equality,
we conclude that (x) holds, which implies the negation of (b). Item (3) is
order-dual to item (2). O

In light of the above lemma, we make the following definitions.

Definition 6.2.16. Let (X,Y, R) be a TSCP. For x € X, we say that x is R-
irreducible if there exists y € Y such that xRy, and —(x'Ry) for all v’ € X
with x’ < x. Order dually, for y € Y, we say that y is R-irreducible if there
exists x € X such that xRy, and —~(xRy’) for all y' € Y with iy’ > y. Let
U C X a clopen downset. We say that U is R-regular provided that, for
each R-irreducible x € X with xR(.) € UR(.), we have x € U. Order
dually, we say that a downset V C Y is R-coregular provided that, for each
R-irreducible y € Y with (_)Ry C (_)RU, we havey € U.

To see the intuition behind this definition, suppose that (X,Y,R) is the
TSCP dual to some lattice L. Note that, combining Lemma 6.2.15.2 with
the characterization of join-admissibility in Lemma 6.1.5, we now get the
following. Let M C L be a finite set, and write Uy := U,;,cp 7. The set
M is join-admissible in L if, and only if, the set Uy, is R-regular. A similar
remark applies to meet-admissibility and R-coregularity.



148 Chapter 6. Distributive envelopes and topological duality for lattices

Recall that a clopen downset U C X is R-closed provided that, for each
x € X, we have xR(-) C UR(.) implies x € U. Thus it is clear that ev-
ery R-closed clopen downset in X is R-regular. Preserving admissible joins
exactly corresponds to the reverse implication: as soon as U is R-regular it
must also be R-closed. To sum up:

Proposition 6.2.17. Let (D,E, f,g) be a daDL, and let (X,Y,R) be its dual
polarity. Then the following are equivalent:

1. There exists a lattice L such that (D, E, f,¢) = (D"(L),DV (L), ur,I.);

2. The embedding im(g) < D preserves admissible joins and the embedding
im(f) < E preserves admissible meets.

3. In (X,Y,R), all R-regular clopen downsets in X are R-closed, and all R-
coregular clopen downsets in Y are R-open.

Proof. The equivalence of (1) and (2) holds by Corollary 6.1.9, its order dual,
and the definition of the Galois connection (uy,l;). We now prove that
(2) and (3) are equivalent. Throughout the proof, we write L for the lat-
tice im(g), in which meets are given as in D and \/; S = gf(VpS), for
any S C L. In this proof, we regard L as a sublattice of D, suppressing
the notation i for the embedding L < D. First suppose (2) holds, and let
U be an R-regular clopen downset in X. Since the image of g is \/-dense
in D, there exists M C im(g) such that U = U,,ep M. We show that M
is join-admissible in the lattice L, using Lemma 6.1.5. If x € J*(L°) and
x < VM = gf(Vp M), then we have f°(x) < f(\/p M) by adjunction.
By definition of R and the fact that f is completely join-preserving, we get
that xR(_) € UR(.). Since U is R-regular and x € J*(L%), we get that
x € U, s0x < m for some m € M. Hence, M is join-admissible, and (2)
implies that \/; M = ¢f(\V/p M) = Vp M. Thatis, U = U, so U is R-closed.
The proof that R-coregular clopen downsets in Y are R-open is dual. Now
suppose that (3) holds, and let M C L be a join-admissible subset. Write
U for the clopen downset | J,,cp 7 in X. We show that U is R-regular. Let
x € X be R-irreducible and suppose that xR(_) C UR(_). Then x € J*(L°)
and fo(x) < f(VpM),sox < gf(VpM) = /. M. So, since M is join-
admissible, there exists m € M such that x < m. In particular, we have
x € U, as required. By the assumption (3), we conclude that U is R-closed,
ie,U=U,sothat\/; M = ¢f(\Vp M) = \Vp M. The proof that im(f) < E
preserves admissible meets is dual. O

In light of this proposition, we can now define a subcategory of TSCP’s
which will be dual to the category of lattices with admissible homomor-
phisms.
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Definition 6.2.18. Let (X, Y, R) be a TSCP. We say that (X, Y, R) is tight if
all R-regular clopen downsets in X are R-closed, and all R-coregular clopen
downsets in Y are R-open. We denote by tTSCP the full subcategory of
TSCP whose objects are the tight TSCP’s.

We now obtain our topological duality theorem for lattices with admissible
homomorphisms.

Theorem 6.2.19. The category L, of lattices with admissible homomorphisms is
dually equivalent to the category tTSCP of tight totally separated compact polari-
ties.

Proof. By Proposition 6.2.4, we have that L, is equivalent to a full subcate-
gory of daDL. By Theorem 6.2.13, the category daDL is dually equivalent
to TSCP. Proposition 6.2.17 shows that the image of L, in daDL under this
dual equivalence is tTSCP. O

The above theorem is not as general as possible: although we have only de-
veloped a duality for L, here, it should be possible to generalize this duality
to the categories L,y and Las. To do so, one would need to generalize the
category tTSCP to one where the morphisms are single functions instead
of pairs of functions. We leave this to future work.

In this section, in light of Examples 6.2.1 and 6.2.2, we set out to obtain
a topological duality for lattices in which the spaces are nicer than those
occurring in Hartung’s duality. Although the spaces obtained in our dual-
ity are as nice as can be (they are compact, Hausdorff and totally discon-
nected), this comes at the price of a rather complicated characterization.
Therefore, we are inclined to draw as a negative conclusion that topology
may not be the most opportune language to discuss ‘duality’ for lattices
(unless the definition of a tTSCP can be simplified). Fortunately, the per-
spective of canonical extensions provides an alternative to topology. We
have explained above how canonical extensions can be viewed as a point-
free version of Hartung’s duality, and we have used them to reason about
the topological dual spaces introduced in this chapter. In the last section of
this chapter, we will propose quasi-uniform spaces as a “spatial” alternative
to topology in the context of set-theoretic representations of lattices.

6.3. Quasi-uniform spaces associated with a lattice

In this section we will show that the distributive envelopes of a lattice,
which were defined by a universal property in Section 6.1, are also nat-
ural from a generalized topological perspective. The appropriate frame-
work is that of quasi-uniform spaces, which generalize both quasi-orders
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and topologies (see [47], in particular Chapter 3, for background on the the-
ory of quasi-uniform spaces used in this section). In this section we will
associate two Pervin quasi-uniform spaces to a lattice L, and then show in
Theorem 6.3.3 that the completions of these quasi-uniform spaces coincide
with the dual spaces of the distributive envelopes of L. Thus, quasi-uniform
spaces give a precise spatial meaning to the distributive envelopes of L.
Note that Pervin spaces, uniform completions and compactifications were
used by Erné and Palko [41, 43] to obtain order-theoretic ideal completions.
In this section, we will use the main result from [53, Section 1], which relates
dual spaces to completions of uniform spaces, cf. Theorem 6.3.2 below.
Given a set X, we denote, for each subset A C X, by U4 the subset

(A X)U(XxA)={(xv,y) | xe A = ye A}

of X x X. Given a topology T on X, the filter U; in the power set of X x X
generated by the sets U4 for A € T is a totally bounded transitive quasi-
uniformity on X [47, Proposition 2.1]. The quasi-uniform spaces (X,Ur)
were first introduced by Pervin [125] and are now known in the literature as
Pervin spaces. Generalizing this idea (also see [35]), given any subcollection
C C P(X), we define (X,Uc) to be the quasi-uniform space whose quasi-
uniformity is the filter generated by the entourages Uy for A € C. Here we
will call this larger class of quasi-uniform spaces Pervin spaces.

The first crucial point is that, for any collection C C P(X), the bounded dis-
tributive sublattice D(C) of P(X) generated by C may be recovered from
(X,Uc), even though this cannot be done in general from the associated
topology. The blocks of a space (X,U) are the subsets A C X such that Uy
is an entourage of the space, or equivalently, those for which the charac-
teristic function x4 : X — 2 is uniformly continuous with respect to the
Sierpifiski quasi-uniformity on 2, which is the one containing just 22 and
{(0,0),(1,1),(1,0) }. The following fact is well-known, but we give a proof
since it does not seem to be readily available in the literature.

Theorem 6.3.1. Let X be a set and C C P(X) a collection of subsets. The
set of blocks of the quasi-uniform space (X,Uc) is the sublattice D(C) of P(X)
generated by C.

Proof. The blocks of any quasi-uniform space form a lattice, since U4 N Up
is contained in both Ugnp and Uxyp, for any A, B C X. If A is a block of
Uc, then by definition U4 contains a set of the form (Ngcp Up, where F C C
is finite. From this, it follows that A = J{N{B|x € B,B€ F} | x € A} (cf.
[35, Lemma 2]). O

Further, it is not hard to see that if D C P(Y) and E C P(X) are bounded
sublattices of the respective power sets, thenamap f : (X,Ur) — (Y,Up) is
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uniformly continuous if and only if f ! restricts to a lattice homomorphism
from D to E. Thus, the category of sublattices of power sets with morphisms
that are commuting diagrams

D—E

|,

P(Y) —— P(X),

where ¢ is a complete lattice homomorphism, is dually isomorphic to the
category of Pervin spaces with uniformly continuous maps.

To be able to state the main result from [53] that we want to apply here, we
need to recall the definition of bicompletion of a quasi-uniform space. For
more details see [47, Chapter 3]. Bicompleteness generalizes the notion of
completeness for uniform spaces, which is well-understood (see, e.g., [17,
Chapter IL3]): a uniform space (X, ) is complete if every Cauchy filter con-
verges. Now let (X,U) be a quasi-uniform space. A quasi-uniform space
(X,U) is called bicomplete if and only if its symmetrization (X, U*) is a com-
plete uniform space. Here, recall that the symmetrization, U°, of the quasi-
uniformity I/ is defined as the filter of P(X x X) generated by the union of
U and U~L. It has been shown by Fletcher and Lindgren [47, Chapter 3.3]
that the full subcategory of bicomplete quasi-uniform spaces forms a reflec-
tive subcategory of the category of quasi-uniform spaces with uniformly
continuous maps. Thus, for each quasi-uniform space (X,U), there is a
bicomplete quasi-uniform space (X,4) and a uniformly continuous map

nx : (X,U) — (X,U) with an appropriate universal property.

Theorem 6.3.2 ([53], Theorem 1.6). Let D be a bounded distributive lattice, and
let e : D — P(X) be any bounded lattice embedding of D in a power set lattice.
Denote by D the image of the embedding e. Let X be the bicompletion of the Pervin
space (X,Up). Then X with the induced topology is the Stone dual space of D.

Alternatively, one can think of the quasi-uniform space ()N(, Z]D) as an or-
dered uniform space, as follows. Equip the uniform space (X, Z;{%) with the
order < defined by N,cp U;. Then (X,Z:I%, <) is a uniform version of the
Priestley dual space of D.

We now apply Theorem 6.3.2 to the setting of this chapter. Let L be a
bounded lattice with dual polarity (Xr,Yr,Rr). Then L induces quasi-
uniform space structures (X, ;) and (Y7, Uy) on X} and Y, respectively.
Here /; is the Pervin quasi-uniformity generated by theimage L = {@ | a € L}
and Uy is the Pervin quasi-uniformity generated by the image L={ilacL}.
By Theorem 6.3.2, the bicompletions of these Pervin spaces are spectral
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spaces and the corresponding bounded distributive lattices are the sublat-
tices of P(X; ) and P(Y1) generated by L and L, respectively. The follow-
ing theorem now follows by combining Corollary 6.1.10, Theorem 6.1.4 and
Theorem 6.3.2.

Theorem 6.3.3. Let L be a lattice. The bicompletion of the associated quasi-
uniform Pervin space, (Xr,U;), is the dual space of the distributive N\-envelope,
D(L), of L. Order dually, the bicompletion of the quasi-uniform Pervin space
(Yr,Uy) is the dual space of the distributive \/-envelope, DY (L), of L.

Example 6.3.4. For any finite lattice L, the distributive envelope D"'(L) is
the lattice of downsets of the poset J(L), with the order inherited from L.
Thus, in the finite case, the quasi-uniform space X; is already bicomplete,
and hence equal to its own bicompletion. The same of course holds for
DV(L) and Y;. In the finite case, X; and Y are just the spaces occurring
in Hartung’s duality. For the lattice L discussed in Example 6.2.1 above,
the distributive envelope D" (L) is (isomorphic to) the lattice consisting of
all finite subsets of the countable antichain, and a top element. Thus, in
the bicompletion of X, we find one new point, corresponding to the prime
filter consisting of only the top element. For the lattice K discussed in Ex-
ample 6.2.2, the distributive envelope D"\ (K) is a much bigger lattice than
K, and the bicompletion of X; will contain many new points. In particular,
the bicompletion will not just be the soberification of X; .

Concluding remarks

In this chapter, we developed the theory of distributive envelopes and used
it to obtain a topological duality for lattices. We see our methodology as
an example of the phenomenon that canonical extensions and duality may
help to study lattice-based algebras, even when they do not lie in finitely
generated varieties. As a case in point, our proof of the existence of dis-
tributive envelopes in Section 6.1 made use of canonical extensions of lat-
tices as a key tool. Moreover, the work in that section enabled us to identify
the join-admissible morphisms between lattices. In Section 6.2, we saw that
join- and meet-admissible morphisms are exactly the ones which have func-
tional duals on the X- and Y-components of the dual polarities. We believe
that canonical extensions may be used in a similar way for other varieties
of algebras based on lattices, such as residuated lattices, to mention just one
example.

In Section 6.3, we provided an alternative view of set-representation of lat-
tices, which replaces topology by quasi-uniformity and completion. Theo-
rem 6.3.3 opens the way for obtaining an alternative duality for lattices, in
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which quasi-uniform spaces take the place of topological spaces. To do so,
an interesting first step would be to represent the adjunction D(L) < DV (L)
as additional structure on the pair of quasi-uniform spaces. We leave the
development of these ideas to further research.

Let us mention one more possible direction for further work. For distribu-
tive lattices, the canonical extension functor is left adjoint to the inclusion
functor of perfect distributive lattices into distributive lattices. However,
this is known to be true for lattice-based algebras only in case all basic oper-
ations are both Scott and dually Scott continuous (see [32, Proposition C.9,
p. 196] for a proof in the distributive setting). It follows from results of
Goldblatt [71] that the canonical extension functor for modal algebras (i.e.,
Boolean algebras equipped with a modal operator) can be viewed as a left
adjoint. However, the codomain category that is involved here is not im-
mediately obvious: it is not the category of ‘perfect modal algebras’ in the
usual sense. We conjecture that the distributive envelope constructions de-
veloped in Section 6.1 of this chapter may be used to define a category in
which the canonical extension for lattices is a left adjoint. We also leave the
actual development of this line of thought to future research.
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F(D%)
1(D%)
aDL
DL
DL}
DL
daDL
La
Lav
Lan
SDL
LPS

a-ideal generated by T, 124

box operator associated to a polarity, 139

canonical extension of a lattice L, 19

canonical extension of a map to filter and ideal elements, 81

canonical extension of a map, rt-version, 81

canonical extension of a map, o-version, 81

canonical extension, filter elements of, 80

canonical extension, ideal elements of, 80

category of adjoint pairs between distributive lattices, 136

category of distributive lattices, 56

category of distributive lattices with zero and homomorphisms, 106
category of distributive lattices with zero and proper homomorphisms, 106
category of doubly dense adjoint pairs between distributive lattices, 136
category of lattices with admissible homomorphisms, 133

category of lattices with join-admissible morphisms, 129

category of lattices with meet-admissible morphisms, 131

category of left-handed strongly distributive skew lattices, 108

category of local Priestley spaces, 106

Sh(LPS) category of sheaves over local Priestley spaces, 107

TSCP
51

Cy
=)

o

category of totally separated compact polarities, 142
closed subspace associated to MV-ideal ], 86

closed subspace dual to prime MV-ideal Cy, 87
closure operator associated to a polarity, 139

co-compact dual of a topology p, 26

G(X,Y,Z) complete lattice of Galois-closed sets for a polarity (X,Y,Z), 41

J*(C)

completely join-irreducible elements of a complete lattice C, 19

M®(C) completely meet-irreducible elements of a complete lattice C, 19
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168 Notation

Con(A) congruence lattice of an algebra A, 58

k decomposition of dual space over prime MV-spectrum, 88
qr decomposition associated to a sheaf F, 62
* diamond operator associated to a polarity, lower adjoint to [J, 139

DY(L) distributive V-envelope of L, 131

D(L) distributive A-envelope of L, 122

i dual of MV-algebraic negation, 85

a =bmod I equality modulo the MV-ideal I, 75

Eq étalé space associated to a decomposition g, 65

E xy E fiber product or pullback of E over Y, 57

<filt(L) frame of round filters of (L, <), 36

<idl(L) frame of round ideals of (L, <), 36

Q(—) frame-of-opens functor, 20

(=)«  functor from algebras to spaces, 14

(=)*  functor from sheaves to skew lattices, 109

(=)*  functor from spaces to algebras, 14

D Green'’s equivalence relation, 103

L Green'’s equivalence relation, 104

R Green'’s equivalence relation, 104

Or homomorphism to congruence lattice associated to a sheaf F, 58
h lifting of /1 from a basis to open sets of co-compact dual, 60
® MV-algebra operation plus, 74

® MV-algebraic multiplication, 79

S} MV-algebra operation minus, 75

P! non-zero D-class of a primitive skew lattice P, 111
LoP opposite, order-dual of a lattice L, 26

K order isomorphism between J* and M*, 80

(Puy)  patching property at an open set U, 65

KCon A principal MV-congruence lattice of A, 78

R:L -+ M arelationR C L x M, 29

AR(-) relational forward image of A under R, 29
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(.)RB relational backward image of B under R, 29

TA set of elements that are = some element of A, 32
LA set of elements that are < some element of A, 32
£ sheaf associated to a decomposition g, 65

Sy sheaf dual to a skew lattice, 115

pt(—) space-of-points functor, 20

<z specialization preorder of a topology T, 25
(-) Stone embedding for Boolean algebras, 13
(=) Stone embedding L < P (J®(L?%)), 125
(=) Stone embedding L < P(M*(L?)), 131
T topology of open downsets, 25

dl topology of open upsets, 25

o? patch topology of a topology p, 26

(1 Priestley topology, 16

2 two-element lattice, 13
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a-ideal, 126

adjunction, 134

admissible homomorphism, 135
admissible join, 125

arithmetic frame, 51

axiom of choice, 15

B-flasque sheaf, 60
B-patching decomposition, 67, 95
Baire category theorem, 8
Baker-Beynon duality, 74
binary dual operator, 83
Boolean algebra

as an MV-algebra, 77
Boolean algebras, 7
Boolean product, 61, 70
Boolean space, 16, 18
Booleanization, 19

and Priestley duality, 19

canonical extension, 9
and Priestley duality, 21, 82
of a Boolean algebra, 20
of a coherent category, 23
of a distributive lattice, 82
of a lattice, 21
has enough points, 21
of a proximity lattice, 41
existence, 44
uniqueness, 45
via duality, 51
of a proximity morphism, 47
of a spatial preframe, 23
of an order-preserving function, 83
preserves adjoint maps, 83
canonicity theorem for operators, 83
Cauchy complete category, 30
Cauchy completion (of a category), 30
center of a Boolean algebra, 19
Chang’s completeness theorem, 77
Chinese remainder theorem, 97
clopen set, 15

closure operator, 141
co-compact dual topology, 28
compact ordered space, 26
compact-saturated-basis presentation, 35
compactness (canonical extension), 21
for proximity lattices, 41
compactness (topology), 26
completely normal lattice, 80
completeness of first-order logic, 8
continuous retraction, 30
contravariant functor, 16

dcpo presentation, 55
de Groot dual topology, 28
decomposition
B-patching, 67
associated to a sheaf, 64
direct product, 10, 70
denseness (canonical extension), 21
for proximity lattices, 41
denseness (topology), 8
distributive envelope, 124, 125, 133
existence, 126
uniqueness, 130
distributive lattice
normal, 80
domain theory in logical form, 55
double operator, 86
doubly dense adjoint pair, 139
dual equivalence, 8
dual space
of a Boolean algebra, 15
of a distributive lattice, 17
duality, 8
and completions, 20

étalé space
associated to presheaf, 58
of distributive lattices, 59
of sets, 109
étalé space
associated to a decomposition, 67
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frame, 22
spatial, 23
frame completion, 10, 21
free Boolean extension, 19
and Priestley duality, 19

Galois connection, 43, 133
germ, 58

germinal ideal, 100
global section, 11, 59
Green’s relations, 105, 106

Heyting algebra, 9
Hochster dual topology, 28
hull-kernel topology, 81

ideal
germinal, 100

ideal element (canonical extension), 21,
82

idempotent (in a category), 30

idempotent completion (of a category),
30

interior operator, 141

j-isomorphic, 37

j-morphism, 37

join-admissible morphism, 131

join-admissible set, 125

join-approximable relation, 31

Jénsson’s Lemma, 70

Jénsson-Tarski theorem for Boolean al-
gebras, 20

Kaplansky’s theorem, 94
Karoubi envelope (of a category), 30

{-group, lattice-ordered group, 73
law of excluded middle, 77

local homeomorphism, 58

local section, 59

locale, 22

locally compact space, 26
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intuitionistic, 9
multi-valued Lukaciewicz, 9

m-isomorphic, 37
meet-admissible morphism, 133
meet-admissible set, 133
MV-algebra, 9, 73
definition, 76
dual space is order-topological semi-
group, 87
hyperarchimedean, 102
local, 75
prime spectrum, 80
sheaf representations, 75, 95
totally ordered, 77
MV-chain, 77
MV-ideal, 77
equality modulo, 77
maximal, 77
prime, 77

normal lattice, 80

one-point compactification
and Priestley spaces, 108
open-basis presentation, 35
operator, 83
double, 86
dual, 83
override (skew lattice), 110

patch topology, 18, 28
perfect map, 17, 29
Pervin space, 150
mt-extension of a map, 83
point (of a frame), 22
polarity, 42, 133
dual to a daDL, 142
Galois connection associated to, 43
R-operational, 142
R-separated, 142
tight, 149
topological, 141
totally R-disconnected, 142
presheaf



Index

of distributive lattices, 58
of sets, 109
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local, 108
with largest element, 108
prime filter, 16
prime ideal, 16
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prime ideal theorem, 15
for proximity lattices, 50
prime spectrum (MV-algebra), 81
proper homomorphism, 106
proximity lattice, 33
doubly strong, 34
dual to stably compact spaces, 40
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join-strong, 34
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non-increasing, example, 37
reflexive, 52, 53
proximity morphism, 37

R-closed set, 141
R-coregular set, 147
R-irreducible element, 147
R-open set, 141
R-operational polarity, 142
R-regular set, 147
R-separated polarity, 142
real unit interval
as a stably compact space, 26
as an MV-algebra, 77
restriction (skew lattice), 110
ring
prime spectrum, 17
radical ideal, 17
root system, 79
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round ideal, 38

173

round-compactness, 41
round-denseness, 41
round-filter element, 41
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semisimple algebra, 102
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associated to a decomposition, 67
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sheaf representation, 11
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Abstract

Algebra and logic

Logic, in the broadest sense of the word, is the study of reasoning. Algebra
is famous for having a somewhat peculiar, often feared syntax, which was
invented to abstract the language of everyday calculations and led to ex-

pressions such as —tEvbr—tac W. The core idea in the algebraic study of logic
is that one can calculate with sentences and other linguistic expressions just
as if they were numbers. This revolutionary insight is due to the 19" century
English logician George Boole [15, 21].

Boole’s algebraization of logic made it possible to investigate, with math-
ematical methods, the basic rules and assumptions that govern reasoning.
From the early 20! century onwards, many other logical systems were in-
troduced that departed from Boole’s original system. Among these were
the so-called intuitionistic logic, stemming from the work of the Dutch math-
ematician and philosopher L. E. J. Brouwer, and several many-valued logics
were proposed, among others, by Kurt Godel and Jan Lukasiewicz. The
algebraic structure that arose from several of these “modern” kinds of logic
plays a role in several chapters in this thesis.!

Duality

One of the main themes in this thesis is duality. Duality is a mathematical
framework which studies the fundamental connection between form (syn-
tax) and meaning (semantics) in logic. The first important insight of duality
theory, due to M. H. Stone in his foundational work [137], was that Boole’s
algebraic system of logic could be alternatively represented with topology:
the mathematical theory of the space around us. Stone’s duality thus ex-
hibited a deep connection between a formulaic, syntactic kind of reasoning
on the one hand, and a more visual, spatial kind of reasoning on the other.
Crucially, Stone noticed that the move between the two kinds of reasoning
involves a reversal in the direction of transformations, in a way analogous
to the classical, 19™-century ‘Galois theory’ of field extensions and their
Galois groups.

The beautiful theory of duality which emerged from Stone’s work has since
been generalized and fine-tuned in several different directions, so that it
can also accommodate the modern strands of logic that we already men-

To give just one example: MV-algebras (short for “many-valued algebras”), which are the
object of study in Chapter 4 of this thesis, were introduced to study the version of many-valued
logic introduced by Lukasiewicz.
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tioned above. Two of these directions are of particular importance to much
of the work in this thesis. First, H. A. Priestley’s work [127], which showed
that also order, not only topology, often plays an important role in duality.
Second, the theory of canonical extensions, which casts duality theory itself
in algebraic form, initiated by Jénsson and Tarski in the 1950’s [84] and con-
tinued by Jénsson, Gehrke [56], and several other authors since the 1990’s.
In Chapter 1 of this thesis, we discuss Stone’s and Priestley’s dualities and
the theory of canonical extensions in more detail. We then generalize these
two techniques in Chapter 2 to the domain of stably compact spaces.

Sheaves

The French mathematician A. Grothendieck and his “Séminaire de Géométrie
Algébrique du Bois Marie” [75] pioneered algebraic geometry in the 1960’s,
using the then recently developed theory of sheaves? as an essential tool. A
sheaf is used in algebraic geometry to gain understanding of a complex alge-
braic structure by arranging it into several smaller, usually simpler, pieces.
This way, one can often obtain local information about the algebraic struc-
ture which was hard to grasp by only looking at the structure as a whole.

Sheaves and duality have something in common: both methods use spatial
insights to study structures of an algebraic nature. Indeed, a central result
in this thesis (Theorem 3.3.7 in Chapter 3) makes this connection between
Grothendieck’s sheaves and Stone’s duality mathematically precise. This
theorem is subsequently applied in Chapter 4 to the special case of MV-
algebras, already mentioned in note 1 above. A different connection be-
tween sheaves and duality is made in Chapter 5, where we develop Priest-
ley duality for skew lattices. In the last chapter of this thesis, Chapter 6, we
develop a distributive envelope for lattices, and apply it to the study of duality
for lattices.

2In everyday language, the word “sheaf” is sometimes used in expressions such as “sheaf
of light”, or “sheaf of corn”, to mean approximately the same thing as “bundle”.



Samenvatting

Algebra en logica

Logica, in de breedste zin van het woord, bestudeert het redeneren. Alge-
bra staat bekend om haar enigszins vreemde, vaak gevreesde syntax, die
werd uitgevonden om de taal van alledaagse berekeningen te abstraheren,

en leidde tot uitdrukkingen zoals =tEvb"—dac Vﬁz_‘m. Het kern-idee in de alge-
braische bestudering van logica is dat men met zinnen en andere taalkun-
dige uitdrukkingen kan rekenen alsof het getallen zijn. Dit revolutionaire in-
zicht is afkomstig van de 19°-eeuwse Engelse logicus George Boole [15, 21].
Boole’s algebraisering van logica maakte het mogelijk om met wiskundige
methoden de basisregels en -aannames te bestuderen die ten grondslag
liggen aan het redeneren. Vanaf de vroege 20° eeuw werden er veel an-
dere logische systemen geintroduceerd die afweken van Boole’s oorspron-
kelijke systeem. Hieronder bevonden zich de zogenaamde intuitionistische
logica, afkomstig uit het werk van de Nederlandse wiskundige en filosoof
L. E. ]J. Brouwer, en verschillende meerwaardige logica’s die werden voorge-
steld door onder andere Kurt Godel en Jan Lukasiewicz. De algebraische
structuur die naar boven kwam uit verschillende van deze “moderne” soor-
ten logica speelt een rol in verschillende hoofdstukken in dit proefschrift.!

Dualiteit

Een van de voornaamste thema’s in dit proefschrift is dualiteit. Dualiteit
is een wiskundig raamwerk dat de fundamentele verbintenis tussen vorm
(syntax) en betekenis (semantiek) in de logica bestudeert. Het eerste belang-
rijke inzicht in dualiteitstheorie werd beschreven door M. H. Stone in zijn
baanbrekende artikel [137]. Stone liet zien dat Boole’s algebraische systeem
voor logica ook kon worden gerepresenteerd met topologie: de wiskundige
theorie van de ruimte om ons heen. De dualiteit van Stone bracht op deze
manier een diepe verbintenis naar voren tussen aan de ene kant een for-
mulaische, syntactische vorm van redeneren, en aan de andere kant een
meer visuele, ruimtelijke variant. Verder had Stone het cruciale inzicht dat
het heen en weer gaan tussen deze twee soorten van redeneren een omkering
in de richting van transformaties met zich meebrengt, op een wijze analoog
aan de klassieke, 19°-eeuwse ‘Galois-theorie’ van lichaamsuitbreidingen en
hun Galois-groepen.

De prachtige theorie van dualiteit die voortkwam uit het werk van Stone

1Om hier een voorbeeld van te geven: MV-algebra’s (een afkorting voor “many-valued
algebras”), die in Hoofdstuk 4 van dit proefschrift aan bod komen, werden geintroduceerd
om Lukasiewicz’ meerwaardige logica te bestuderen.

177



178 Samenvatting

is sindsdien veralgemeniseerd en geraffineerd in verschillende richtingen,
waardoor de theorie nu ook toepasbaar is op de hierboven al genoemde
modernere vormen van logica. Twee van deze richtingen zijn van bijzon-
der belang voor een groot deel van dit proefschrift. Ten eerste het werk van
H. A. Priestley [127], waarin zij aantoonde dat niet alleen topologie, maar
ook ordening, vaak een belangrijke rol in dualiteit speelt. Ten tweede is de
theorie van canonieke extensies, die de dualiteitstheorie zelf in een alge-
braische vorm giet, van belang. De theorie van canonieke extensies werd
geinitieerd door Jonsson en Tarski in de jaren ‘50 van de vorige eeuw [84],
en voortgezet door Jénsson, Gehrke [56], en vele andere auteurs sinds de
jaren ‘90. In Hoofdstuk 1 van dit proefschrift worden Stone’s en Priestley’s
dualiteiten en de theorie van canonieke extensies in meer detail besproken.
Vervolgens generaliseren we deze twee technieken in hoofdstuk 2 tot het
domein van de stably compact spaces (stabiel compacte ruimtes).

Schoven

De Franse wiskundige A. Grothendieck vervulde in de jaren ‘60 van de vo-
rige eeuw een pioniersrol in de algebraische meetkunde met zijn “Séminaire
de Géométrie Algébrique du Bois Marie” [75], waarin de toen recent ont-
wikkelde schoventheorie een essentieel instrument was. Een schoof 2 wordt
in de algebraische meetkunde gebruikt om een complexe algebraische struc-
tuur beter te begrijpen door haar te rangschikken met behulp van verschil-
lende kleinere, vaak eenvoudigere, stukken. Op deze manier kan men lo-
kale informatie over de algebraische structuur ontdekken die niet zichtbaar
is als er louter naar de globale structuur wordt gekeken.

Schoven en dualiteit hebben iets gemeen: beide methoden gebruiken ruim-
telijke inzichten om structuren van algebraische aard te bestuderen. Een
centraal resultaat in dit proefschrift (Stelling 3.3.7 in Hoofdstuk 3) laat zien
dat dit verband tussen Grothendieck’s schoven en Stone’s dualiteit inder-
daad wiskundig hard gemaakt kan worden. Vervolgens wordt deze stelling
in Hoofdstuk 4 toegepast op het bijzondere geval van MV-algebra’s, al ge-
noemd in noot 1 hierboven. Een ander verband tussen schoven en dualiteit
wordt gelegd in Hoofdstuk 5, waar een Priestley dualiteit voor skew lattices
(scheve tralies) wordt ontwikkeld. In het laatste hoofdstuk van dit proef-
schrift, Hoofdstuk 6, ontwikkelen we een distributive envelope (distributieve
omhulling) voor lattices (tralies) en passen we deze toe om dualiteit voor
tralies te bestuderen.

%In alledaags taalgebruik wordt het woord “schoof” soms gebruikt in uitdrukkingen zoals
“een schoof licht”, of “een schoof koren”, en betekent dan ongeveer hetzelfde als “bundel”.
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