Math 308R: Bridge to Advanced Mathematics

Solutions to Midterm Exam 1, 22 September 2016

Note. Below you find one possible solution to each problem; other correct solutions are often possible.

1. Let n be an integer.

(a) Prove: if 5n + 3 is odd then n is even.

We give a proof by contrapositive. Suppose that n is odd. Then n = 2x + 1 for some integer x. Therefore,

$$5n + 3 = 5(2x + 1) + 3 = 10x + 8 = 2(5x + 4),$$

which is even, because 5x + 4 is an integer.

(b) Prove, using item (a): if 5n + 3 is odd then 3n - 4 is even.

Assume that 5n + 3 is odd. By item (a), n is even. Thus, n = 2y for some integer y. Therefore,

$$3n - 4 = 6y - 4 = 2(3y - 2),$$

which is even, because 3y - 2 is an integer.

(c) Give the missing word in the following sentence: "When we proved the result in (b), we used the result in (a) as a ______." Lemma.

2. State the following two statements in words:

(a) $\exists x \in \mathbb{R}, x^2 = -1.$

There exists a real number x such that x^2 is equal to -1.

(b) $3 \mid a \iff a \equiv 2 \pmod{4}$.

3 divides a if and only if a is congruent to 2 modulo 4.

State **the negation** of the following two statements in words:

(c) John is driving only if John is wearing a seatbelt.John is driving and John is not wearing a seatbelt.or:

It is not the case that John is driving only if John is wearing a seatbelt.

(d) For every natural number n, if n is odd, then n² is odd or n − 3 is even.
There exists a natural number n such that n is odd, n² is even, and n − 3 is odd. or:

It is not the case that for every natural number n, if n is odd, then n^2 is odd or n-3 is even.

- **3.** Let A, B, and C be subsets of a universal set U.
 - (a) For U = N, give an example of three sets A, B and C that are pairwise disjoint.
 We need an example of sets of natural numbers A, B, C such that the three sets A ∩ B, A ∩ C and B ∩ C are empty. For example, A = {1}, B = {2,3,4} and C = {5,6,7}.
 - (b) Prove that $A (B \cap C) = (A \cap \overline{B}) \cup (A \cap \overline{C})$. You may use any proof method you wish. If you use any laws, state their names.

$$\begin{aligned} A - (B \cap C) &= A \cap \overline{B \cap C} & (since \ A - D = A \cap \overline{D}) \\ &= A \cap (\overline{B} \cup \overline{C}) & (by \ de \ Morgan's \ law) \\ &= (A \cap \overline{B}) \cup (A \cap \overline{C}) & (by \ the \ distributive \ law). \end{aligned}$$

4. Let x and y be real numbers.

- (a) Prove that, if $x^3 + y xy \ge 0$, then $x \ge 0$ or $y \ge 0$. Assume that x < 0 and y < 0. Then $x^3 < 0$ and xy > 0, so -xy < 0. Therefore, $x^3 + y - xy < 0$.
- (b) Give the name of the proof method you used in item (a). Proof by contrapositive.
- **5.** For each $k \in \{0, 1, 2, 3\}$, let A_k be the set $\{x \in \mathbb{Z} \mid x \equiv k \pmod{4}\}$.
 - (a) Is $\{A_0, A_1, A_2, A_3\}$ a partition of \mathbb{Z} ? You should state the definition of 'partition' to explain your answer.

Yes. It satisfies the three conditions for being a partition, namely, the sets A_k are pairwise disjoint $(A_k \cap A_\ell = \emptyset \text{ when } k \neq \ell)$, their union is \mathbb{Z} $(\bigcup_{k=0}^3 A_k = \mathbb{Z})$, and none of the sets is empty $(A_k \neq \emptyset \text{ for each } k)$.

(b) Prove that, for every integer $y: y^2 \in A_1$ if and only if $y \in A_1$ or $y \in A_3$.

You may use the following fact without proving it: for any integers x and y, if $y \equiv x \pmod{4}$, then $y^2 \equiv x^2 \pmod{4}$.

Let y be an integer. First assume that $y \in A_1$ or $y \in A_3$.

Case 1. $y \in A_1$. By definition, $y \equiv 1 \pmod{4}$. By the fact, $y^2 \equiv 1 \pmod{4}$, so $y^2 \in A_1$. Case 2. $y \in A_3$. By definition, $y \equiv 3 \pmod{4}$. By the fact, $y^2 \equiv 9 \pmod{4}$. Since $9 \equiv 1 \pmod{4}$, $y^2 \in A_1$.

Conversely, assume that $y \notin A_1$ and $y \notin A_3$. There are two cases: $y \in A_0$ or $y \in A_2$.

Case 1. $y \in A_0$. Then $y \equiv 0 \pmod{4}$, so $y^2 \equiv 0 \pmod{4}$ by the fact. So $y^2 \in A_0$. Hence, $y^2 \notin A_1$.

Case 2. $y \in A_2$. Then $y \equiv 2 \pmod{4}$, so $y^2 \equiv 4 \pmod{4}$ by the fact. Since $4 \equiv 0 \pmod{4}$, it follows that $y^2 \in A_0$. Hence, $y^2 \notin A_1$.

- **6.** Let P, Q and R be statements.
 - (a) Prove, using a truth table, that $P \Rightarrow (Q \Rightarrow P)$ is a tautology.

P	Q	$Q \Rightarrow P$	$P \Rightarrow (Q \Rightarrow P)$
T	T	Т	Т
T	Г F T	T	T
F	T	F	T
F	F	T	T

The truth table shows that $P \Rightarrow (Q \Rightarrow P)$ is a tautology because all the truth values in that column are T.

(b) Prove, without using a truth table, that $P \Rightarrow \sim (Q \land R) \equiv \sim P \lor \sim Q \lor \sim R$.

(Hint: use the fact that, for any statements P and S, $P \Rightarrow S \equiv \sim P \lor S$, and use de Morgan's laws. Clearly state when you use these facts.)

$$\begin{split} P \Rightarrow \sim & (Q \land R) \equiv \sim P \lor \sim & (Q \land R) \\ \equiv \sim & P \lor \sim & Q \lor \sim R. \end{split} \qquad \begin{array}{l} (using \ P \Rightarrow S \equiv \sim P \lor S) \\ (using \ de \ Morgan's \ law) \end{array} \end{split}$$