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These are lecture notes for the second part of MPRI course 2.16, as given in 2022-2023.

Note. The lectures contained more complete discussions of the proofs of the various statements

given below. As part of the course, it is expected that the student understands and can reproduce

the arguments in those proofs, even if they are not reproduced in these notes.

1 Automata and monoids

In this part, we make a first link between automata and monoids. It is also the occasion to fix

some definitions and notations.

Definition 1. A semigroup is a pair (S, ·) where S is a set and · is a binary associative operation

on S, that is, x · (y · z) = (x · y) · z for all x, y, z ∈ S. We often omit notation for ·.
A monoid is a tuple (M, ·, 1) where (M, ·) is a semigroup and 1 is a neutral element, that is,

1x = x = x1 for all x ∈M .

A group is a monoid (G, ·, 1) in which every element is invertible, that is, for all g ∈ G, there

exists h ∈ G such that gh = 1 = hg.

A homomorphism between semigroups is a function that preserves ·. A homomorphism between

monoids is moreover required to preserve 1. A monoid homomorphism between groups is a group

homomorphism. (Preservation of inverses is automatic.)

A subset T of a semigroup S is called a subsemigroup if xy ∈ T for all x, y ∈ T , and a submonoid

if it moreover contains 1. The correct notion of subgroup of a semigroup is a bit subtle and will

be discussed in detail later.

Example 2. Let Σ be a set. The set Σ∗ of all finite words (i.e. sequences) over Σ is a monoid

under concatenation, with neutral element the empty word, denoted ϵ. The length of a word w is

denoted |w| and is often identified with the finite set {1, . . . , |w|}; for i ∈ |w| we then denote by

wi the i
th letter of w. We identify every a ∈ Σ with the word a ∈ Σ∗ of length 1.

Proposition 3. For any set Σ, the monoid Σ∗ is the free monoid over Σ, that is, for any function

f : Σ →M , where M is a monoid, there is a unique homomorphism f̄ : Σ∗ →M extending f , that

is, such that f̄(a) = f(a) for all a ∈ Σ.

Example 4. For any set Q, the set Rel(Q) of binary relations from Q to Q is a monoid under

relational composition, defined for R,S ∈ Rel(Q) by

R · S := {(q, q′) ∈ Q2 : there exists q′′ ∈ Q such that (q, q′′) ∈ R and (q′′, q′) ∈ S}.
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The neutral element is the diagonal relation ∆ := {(q, q) : q ∈ Q}.
An important submonoid of Rel(Q) is End(Q), the set of functions from Q to Q. We thus f ◦g

for the function that first does f and then does g, but we may also write gf for this function.

Definition 5. An automaton is a tupleA = (Q,Σ, δ, I, F ), whereQ and Σ are sets, δ : Σ → Rel(Q)

is a function, and I, F ⊆ Q. The automaton is finite if both Q and Σ are finite and (complete)

deterministic if δ(a) is a (total) function for all a ∈ Σ. An automaton A accepts a word w ∈ Σ∗ iff

the relation δ(w) intersects I × F non-trivially, and rejects the word otherwise. The set of words

accepted by A is called the language recognized by A.

We briefly explain how this succinct definition corresponds to the usual one. We may view an

automaton as defined here a Σ-labeled multigraph with set of nodes Q, and for each pair (q, q′) ∈ Q

we create an edge q
a→ q′ iff (q, q′) ∈ δ(a). In addition, it has two distinguished sets of states I of

initial and F of final states. The relation δ(w) contains exactly the pairs (q, q′) such that there is

a path from q to q′ in this graph that is labeled by w. Thus, the notion of acceptance given here

is exactly the usual one (for non-deterministic automata).

With these definitions in place, the following theorem becomes almost obvious.

Theorem 6. Let L ⊆ Σ∗. The following are equivalent:

1. The language L is recognized by some finite automaton;

2. There exist a finite monoid M and a homomorphism h : Σ∗ →M such that L = h−1(P ) for

some P ⊆M ;

3. The language L is recognized by some finite complete deterministic automaton.

In light of this theorem, we also say that a homomorphism h : Σ∗ →M recognizes a language

L if there is P ⊆M such that L = h−1(P ).

Definition 7. A regular language is a set of finite words that satisfies the equivalent conditions

of Theorem 6.

In particular, the set of regular languages in an alphabet Σ is now easily seen to form a Boolean

algebra, using the characterization (2) in Theorem 6 and the Cartesian product of monoids for

the case of intersection.

2 Automata and logic

We define monadic second order (MSO) logic, the extension of first order logic which adds quantifi-

cation over subsets of the structure. For simplicity, we only consider logic here over linear orders

with unary predicates. We also fix three pairwise disjoint sets Σ, X1 and X2.

Definition 8 (Syntax of MSO). We inductively define the set of formulas over alphabet Σ with

first-order variables in X1 and second-order variables in X2, and functions FV1 and FV2 which

assign to any MSO-formula its set of free first-order and second-order variables, respectively, as

follows.

For any x, y ∈ X1, X ∈ X2, and a ∈ Σ,
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1. the expression x < y is a formula, FV1(x < y) = {x, y}, FV2(x < y) = ∅;

2. the expression a(x) is a formula, and FV1(a(x)) = {x}, FV2(a(x)) = ∅;

3. the expression X(x) is a formula, and FV1(X(x)) = {x}, FV2(X(x)) = {X};

4. ⊥ is a formula with FV1(⊥) = FV2(⊥) = ∅;

5. when ϕ, ψ are formulas, ϕ ∨ ψ is also a formula, and FVr(ϕ ∨ ψ) = FVr(ϕ) ∪ FVr(ψ) for

r = 1, 2;

6. when ϕ is a formula, ¬ϕ is also a formula, and FVr(¬ϕ) = FVr(ϕ) for r = 1, 2;

7. when x ∈ FV (ϕ), ∃xϕ is a formula and FV1(∃xϕ) = FV1(ϕ) \ {x}, FV2(∃xϕ) = FV2(ϕ);

8. when X ∈ FV (ϕ), ∃Xϕ is a formula and FV1(∃Xϕ) = FV1(ϕ), FV2(∃Xϕ) = FV2(ϕ) \ {X}.

A formula of type (1) – (4) is called atomic; a literal is an atomic or negated atomic formula. A

formula is first order if it does not use (3) and (8) in its construction. A formula ϕ is a sentence

if FV1(ϕ) = FV2(ϕ) = ∅. The notation ϕ(x,X) means: ϕ is a formula with FV1(ϕ) ⊆ x and

FV2(ϕ) ⊆ X.

We also use some standard abbreviations:

• ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ);

• ∀xϕ := ¬∃x¬ϕ and ∀Xϕ := ¬∃X¬ϕ;

• x > y := y < x, x ≤ y := ¬(y < x), x = y := x ≤ y ∧ y ≤ x;

• succ(x, y) := x < y ∧ ∀z, (z < x) ∨ (y < z)

• first(x) := ∀y x ≤ y, last(x) := ∀y y ≤ x, empty := ∀x⊥.

The idea is that an MSO-sentence will define a language of Σ-words. To make this definition

precise, we will need a slightly more general induction that associates a language of marked Σ-

words to any MSO-formula, where the marking refers to free variables that might occur in it.

Definition 9 (Semantics of MSO). Let F1 = {x1, . . . , xm} ⊆ X1, F2 = {X1, . . . , Xn} ⊆ X2. A

marked word over Σ, F1, F2 is a tuple (w, p, P ), where w ∈ Σ∗, p ∈ |w|F1 and P ∈ P(|w|)F2 .

We inductively define a relation |= between marked words (w, p, P ) and formulas ϕ such that

FVr(ϕ) ⊆ Fr for r = 1, 2:

1. (w, p, P ) |= xi < xj iff pi < pj ;

2. (w, p, P ) |= a(xi) iff wi = a;

3. (w, p, P ) |= Xi(xj) iff pj ∈ Pi;

4. (w, p, P ) |= ⊥ never holds;

5. (w, p, P ) |= ϕ ∨ ψ iff (w, p, P ) |= ϕ or (w, p, P ) |= ψ;

6. (w, p, P ) |= ¬ϕ iff it is not the case that (w, p, P ) |= ϕ;
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7. (w, p, P ) |= ∃xm+1ϕ iff there exists pm+1 ∈ |w| such that (w, p′, P ) |= ϕ, where p′ is the tuple

p with pm+1 appended;

8. (w, p, P ) |= ∃Xm+1ϕ iff there exists Pm+1 ∈ |w| such that (w, p, P
′
) |= ϕ, where P

′
is the

tuple P with Pm+1 appended;

The language defined by ϕ is the set of marked words (w, p, P ) such that (w, p, P ) |= ϕ.

Note that with these definitions, the abbreviations given after Definition 8 also have the ex-

pected meaning. A formula in negation normal form is built from literals by applying disjunction,

conjunction and quantifiers. Using rewriting rules like ¬(ϕ ∨ ψ) → ¬ϕ ∧ ¬ψ, ¬∃xϕ→ ∀x¬ϕ, etc.,
it can be easily shown that any formula can be put into an equivalent formula in negation normal

form.

Theorem 10. A language L ⊆ Σ∗ is regular if, and only if, it is definable by a monadic second

order sentence.

Note that the above result (and the fact that its proof is constructive) in particular gives a

decision procedure for satisfiability of a formula of monadic second order logic on finite words:

given a formula ϕ, construct its automaton Aϕ and check whether or not it accepts any word. The

arguments of the above proof can also be used to prove that every MSO formula ϕ is equivalent

to an MSO formula ϕ′ with only existential second order quantifiers, since the formula expressing

the behavior of an automaton is of this form.

3 First order logic and aperiodicity

We now investigate first order logic. The goal of this section is to give a decidable criterion on a

recognizing monoid for a regular language L that characterizes first order definability.

Example 11. The language

L = {w ∈ {a, b}∗ : w contains an odd number of b’s}

is regular, as can be easily seen using the monoid homomorphism induced by {a, b} → Z2 sending

a to [0] and b to [1], and taking P = {[1]}. Thus, it is MSO definable by Theorem 10, and an

explicit formula is also not too hard to write down; it roughly has the form:

∃X(“X contains exactly every other b-position”)

However, the use of the monadic quantifier ∃X is essential: this language can not be defined in

first order logic. How do we prove that?

3.1 Rank equivalence

In this section, we concentrate on first order logic, so we will use marked words of the form (w, p),

where each pi is a position in |w|, but no subsets are marked. We mostly fix a finite alphabet Σ

and we also fix the set of first order variables X1 = {x1, x2, . . . }, and by an n-marked word we

mean a marked word (w, p1, . . . , pn) with w ∈ Σ∗.
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An important induction parameter in first order logic (and to some extent also in monadic

second order logic, but we do not consider that here) is the quantifier rank of a formula, defined

as the maximum nesting depth of quantifiers. When ϕ is a first order formula, we write qr(ϕ) for

its quantifier rank; it may be defined formally by a simple induction.

For every k, n ≥ 0, we introduce an equivalence relation ≡n,k on n-marked words, defined as

follows. Let (w, p1, . . . , pn) and (v, q1, . . . , qn) be n-marked words. Then we say

(w, p1, . . . , pn) ≡n,k (v, q1, . . . , qn) ⇐⇒ for every FO-formula ϕ(x1, . . . , xn) with qr(ϕ) ≤ k,

(w, p1, . . . , pn) |= ϕ iff (v, q1, . . . , qn) |= ϕ.

We will write FOn,k for the set of FO-formulas with free variables among {x1, . . . , xn} and quan-

tifier rank ≤ k.

The following characterization of this equivalence relation is a fundamental tool. It holds more

generally for any finite logical syntax, but we only use it here for words.

Theorem 12 (Fräıssé-Hintikka). For every n, k, the equivalence relation ≡n,k has finitely many

classes, each of which is first order definable.

More precisely, there exists a family (Θn,k)n,k≥0 of finite sets of FOn,k-formulas such that, for

every n, k ≥ 0, every marked word (w, p) satisfies exactly one of the formulas θ in Θn,k, and its

≡n,k-equivalence class consists of exactly those marked words (v, q) that also satisfy θ.

Moreover, for any n-marked words (w, p), (v, q), the following are equivalent for any k ≥ 0:

1. (w, p) ≡n,k+1 (v, q);

2. for every pn+1 ∈ |w|, there exists qn+1 ∈ |v| such that (w, ppn+1) ≡n+1,k (v, qqn+1), and for

every qn+1 ∈ |v|, there exists pn+1 ∈ |w| such that (w, ppn+1) ≡n+1,k (v, qqn+1).

Also, (w, p) ≡n,0 (v, q) if, and only if, w(pi) = v(qi) for every 1 ≤ i ≤ n and pi < pj iff qi < qj

for every 1 ≤ i, j ≤ n.

While the proof of this theorem was some work, it now allows us to deduce some things about

equivalence and definability rather easily.

When w is a word and p, q ∈ {1, . . . , |w|}, we write w(p, q) for the factor of w on the open

interval (p, q); more formally, it has length q − 1 − p when p < q − 1 and 0 otherwise, and

w(p, q)i := w(p + i) for 1 ≤ i ≤ q − 1 − p. Similarly, we write w(< q) for the prefix of w ending

just before q, and w(> p) for the suffix of w starting just after p. If 1 ≤ p1 < · · · < pn ≤ |w| is a
strictly increasing tuple of positions in |w|, we say that it induces the decomposition

w = w(< p1) · w(p1) · w(p1, p2) · · · · · w(pn−1, pn) · w(pn) · w(> pn).

We need one lemma about relativizing first order formulas to intervals and rays.

Lemma 13. Let x = (x1, . . . , xn) and let y and z be variables not occurring in x. For any first

order formula ϕ(x), there exists a formula ϕ(y,z)(x, y, z) of the same quantifier rank as ϕ such that,
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for any word w, q, r ∈ |w|, and p ∈ |w(i, j)|n,

(w, p q r) |= ϕ(y,z) ⇐⇒ w(q, r), p |= ϕ.

Analogous formulas ϕ<y and ϕ>z exist for the prefixes and suffixes.

Proposition 14. Let (w, p) and (v, q) be n-marked words. Then (w, p) ≡n,k (v, q) if, and only if,

(w, p) ≡n,0 (v, q), and, for every 1 ≤ i, j ≤ n such that (pi, pj) does not contain any element of p,

w(pi, pj) ≡0,k v(qi, qj), and also w(< min p) ≡0,k v(< min q) and w(> max p) ≡0,k v(> max q).

The following now follows easily.

Lemma 15 (Ehrenfeucht-Fräıssé lemma). Let w, v ∈ Σ∗. For any k ≥ 0, w ≡0,k+1 v if, and

only if, for every p ∈ |w|, there exists q ∈ |v| such that w(p) = v(q), w(< p) ≡0,k v(< q), and

w(> p) ≡0,k v(> q), and for every q ∈ |v| there exists p ∈ |w| such that the same holds.

We deduce two basic but crucial facts from the above: first, ≡0,k respects monoid multiplication

(i.e., it is a congruence in the terminology that we will introduce below), and second, first order

logic of rank k can not ‘count’ beyond 2k.

Proposition 16. For any w,w′ ∈ Σ∗, if w ≡0,k w
′, then uw ≡0,k uw

′ and wu ≡0,k w
′u for any

u ∈ Σ∗.

Proposition 17. For any k ≥ 0 and w ∈ Σ∗, if m,m′ ≥ 2k, then the words wm and wm′
are

≡0,k-equivalent.

We can now easily deduce the non-FO-definability of a language.

Example 18. The language L = {w ∈ {a, b}∗ : w contains an odd number of b’s} is not first

order definable. Indeed, let ϕ be any FO-sentence, and k := qr(ϕ). Then, by Proposition 17,

b2
k |= ϕ iff b2

k+1 |= ϕ, but the first is in L while the second is not (conversely when k = 0). Thus,

ϕ does not define L.

More generally, given a regular language L, we deduce that a necessary condition for L to

be first order definable is that, for every word w, there exists M such that either wm ∈ L for

every m ∈ M , or wm ̸∈ L for every m ∈ M . Indeed, if ϕ is of quantifier rank k and defines L,

take M := 2k. If wM ∈ L, then wM |= ϕ, so wm ∈ L for every m ∈ M , since wm ≡0,k w
M by

Proposition 17. If wM ̸∈ L, then wm ̸∈ L for every m ≥M .

3.2 Syntactic congruence

There are two problems: it is not clear a priori that the necessary condition given above is also

sufficient, and also not that it is decidable. The second problem is most easily dealt with using

the concept of syntactic congruence for a regular language.

We recall some basic algebra.

Definition 19. Let S be a semigroup. A congruence on S is an equivalence relation ≡ such that

for any x, y, α ∈ S, if x ≡ y, then αx ≡ αy and xα ≡ yα. In this case, the quotient S/≡ is again a
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semigroup. We say ≡ has finite index if S/≡ is finite. When h : S → T is a homomorphism, the

equivalence relation

ker(h) := {(x, y) ∈ S2 : h(x) = h(y)}

is always a congruence.

The following is a special case of the general “first isomorphism theorem” of universal algebra.

Theorem 20. For any homomorphism h : S → T , the quotient semigroup S/ker(h) is isomorphic

to the image of h, via the isomorphism sending a class [x]ker(h) to h(x).

Definition 21. Let L ⊆ Σ+ be a language. The syntactic congruence of L is the equivalence

relation on Σ+ defined by

u ≡L v ⇐⇒ for every α, β ∈ Σ∗, αuβ ∈ L iff αvβ ∈ L.

The syntactic semigroup is SL := Σ+/≡L and the syntactic morphism is the quotient map

πL : Σ
+ → SL. In the same way, when L ⊆ Σ∗, we define the syntactic monoid ML := Σ∗/≡L.

Note that ≡L is indeed always a congruence and that L =
⋃

u∈L[u]≡L
.

Proposition 22. If h : Σ+ → S is any semigroup homomorphism and L = h−1(P ) for some

P ⊆ S, then there exist a subsemigroup S′ of S and a surjective homomorphism of S′ onto the

semigroup SL. In particular, the syntactic congruence ≡L has finite index if, and only if, L is

regular. The same holds true for monoids.

With the terminology that a semigroup T divides a monoid S if T is the homomorphic image

of a subsemigroup of S, we can phrase the first part of Proposition 22 as: the syntactic semigroup

of L divides any semigroup recognizing L.

We are now ready to state and prove one direction of the announced decidable characterization

of first order definable languages.

Definition 23. A finite semigroup S is aperiodic if there exists m ≥ 1 such that xm = xm+1 for

every x ∈ S.

Lemma 24. If S is aperiodic and T divides S, then T is aperiodic.

Theorem 25. For any first order definable L ⊆ Σ∗, the syntactic monoid ML is aperiodic.

3.3 Schützenberger’s Theorem

To finish this section, we will establish the converse of Theorem 25, in the following form.

Theorem 26. For any finite aperiodic semigroup S and any homomorphism h : Σ+ → S, the

language h−1(P ) is first order definable for every P ⊆ S.

This requires a somewhat finer analysis of the structure of finite aperiodic semigroups. As a

first step, let us establish a useful equivalent characterization of aperiodicity.
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Definition 27. A subgroup of a semigroup, or of a monoid, is a subsemigroup which is a group.

An element e of a semigroup is called idempotent if e · e = e.

Note that a subgroup of a monoid (M, ·, 1) may not have the same neutral element as M .

Lemma 28. If S is a finite semigroup, then for any x ∈ S, there exist m, r ≥ 1 such that

{xm+i : 0 ≤ i < r} is a subgroup of S. In particular, xp is idempotent for some p ≥ 1, and if xq

is also idempotent, then xq = xp.

Proposition 29. Let S be a finite semigroup. The following are equivalent:

1. there exists m ≥ 1 such that for every x ∈ S, xm = xm+1;

2. for any x, y, α, β ∈ S, if αy = x and xβ = y, then x = y;

3. any subgroup of S is trivial.

We have been a bit careless about the distinction between semigroups and monoids so far, but

it becomes important in the following. We in particular will use the following simple construction

which adds an identity to a semigroup, even if there already is one.

Definition 30. Let S be a semigroup. We define SI := S ⊎ {I}, where I is a new element not in

S, and a multiplication on SI defined as on S, with in addition, x · I = I · x = x for all x ∈ SI .

We call I an external identity added to S.

Note that (Σ+)I ∼= Σ∗. When h : Σ+ → S is a homomorphism, by a slight abuse of notation

we also write h for the (unique) homomorphism Σ∗ → SI that extends h and sends ϵ to I. More

generally, we have a functor (−)I from semigroups to monoids. It is the adjoint to the forgetful

functor from monoids to semigroups.

We show that a few useful concepts are first order definable, that will be used in the proof

below.

Lemma 31. Let Σ be a finite alphabet and Σ = Σ1⊎Σ2 for two disjoint non-empty subsets Σ1,Σ2

of Σ. There exist first order formulas prei(z) and sufi(z) such that, for any w ∈ Σ∗ and p ∈ |w|,

w, p |= prei(z) ⇐⇒ w(<p) is the longest prefix of w that is in Σ∗
i ,

w, p |= sufi(z) ⇐⇒ w(<p′) is the longest suffix of w that is in Σ∗
i .

There also exist first order formulas firsti(z) and lasti(z) such that, for any w ∈ Σ∗ and p ∈ |w|,

w, p |= firsti(z) ⇐⇒ w(p) ∈ Σi and if p has a predecessor q, then w(q) ̸∈ Σi,

w, p |= lasti(z) ⇐⇒ w(p) ∈ Σi and if p has a successor q, then w(q) ̸∈ Σi.

Note that ¬∃z, prei(z) holds in a word w exactly if w ∈ Σ∗
i , in which case w itself is the longest

prefix that is in Σ∗
i .
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We now prove Theorem 26.1 The proof is by induction on the pair (|S|, |h(Σ)|) in the lexico-

graphic ordering. That is, we will prove, for every n ≥ 1, the following statement H(n):

For any aperiodic semigroup S with |S| ≤ n, for any alphabet Σ and

any homomorphism h : Σ+ → S and s ∈ S, h−1(s) is first order definable.

Note that this suffices, because if P ⊆ S and for each s ∈ P , ϕs is a first order formula that defines

h−1(s), then
∨

s∈P ϕs defines h−1(P ).

The statement H(1) is trivial, because h−1(P ) is either empty or Σ+.

Assume H(k) has been proved for all k < n. We establish H(n) by a second induction on the

parameter |h(Σ)|. If |h(Σ)| = 1, let x be the unique element in h(Σ) and let m ≥ 1 be minimal

such that xm = xm+1. Then, for any word w ∈ Σ+,

h(w) =

x|w| if |w| < m,

xm if |w| ≥ m.

Thus, for s ∈ S, we have

h−1(s) =


{w ∈ Σ+ : |w| = k} if s = xk for some k < m,

{w ∈ Σ+ : |w| ≥ m} if s = xm,

∅ otherwise.

Each of these languages is first order definable (exercise).

Now assume H(n) has been proved for all homomorphisms h : Σ+ → S such that |h(Σ)| < r,

for some r ≥ 2, and let h : Σ+ → S a homomorphism with |h(Σ)| = r. By restricting the codomain

to the subsemigroup im(h) if necessary, we will assume that the homomorphism h is surjective.

For any x ∈ S, we write λx : S → S and ρx : S → S for the left and right multiplication by x.

We distinguish two cases.

Case 1. For every a ∈ Σ, λh(a) and ρh(a) are surjective.

In this case, note that in fact λh(w) and ρh(w) are surjective for every w ∈ Σ+, since they

are compositions of surjective functions. Since h is surjective, this means that λx and ρx are

surjective for every x ∈ S. We show that the aperiodicity of S now implies that S must be a

singleton. Indeed, let x, y ∈ S be arbitrary. Since λx and ρy are surjective, pick α, β ∈ S such

that λx(α) = y and ρy(β) = x. This means that xα = y and βy = x, so x = y by Proposition 29.

Thus, we conclude by H(1).

Case 2. There exists a ∈ Σ such that at least one of λh(a) and ρh(a) is not surjective.

By symmetry, we may assume that λh(a) is not surjective. We now define two alphabets,

Σ1 := h−1(h(a)) and Σ2 := Σ \ Σ1.

Note that Σ1 and Σ2 are proper non-empty subsets of Σ, since |h(Σ)| = r ≥ 2. Since Σ1 and Σ2

are a partition of Σ, for any word w ∈ Σ+, there are unique v1 ∈ Σ∗
1, v2 ∈ Σ∗

2, and u ∈ (Σ+
1 Σ

+
2 )

∗

1Our proof adapts an argument due to Wilke, also see v.G. & Steinberg, Canad. Math. Bull. vol 62(1), pp.
199-208 (2019).
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such that w = v2uv1. Note that this decomposition is moreover first order definable, in the sense

that v2 = w(<p), u = w[p, p′] and v1 = w(>p′) where p is the unique position in w that satisfies

pre2(p) and p′ is the unique position in w that satisfies suf1(p
′), or one of v1 or v2 is the empty

word, which are cases that can be dealt with separately.

For i = 1, 2, let us write Si for the subsemigroup of S generated by h(Σi) and hi for the

restriction of h to a homomorphism hi : Σ
+
i → Si. Since |h(Σi)| < |h(Σ)|, we know by induction

that h−1
i (q) is first order definable for every q ∈ S; say by a formula ϕq,i. Write S0 for the image

of λh(a), which is strictly contained in S by this case’s assumption.

The idea of the proof is now the following. Let s ∈ S. Define

Ts := {(s2, t, s1) ∈ SI
2 × SI

0 × SI
1 : s2ts1 = s}.

Assume for a moment that there is, for each t ∈ SI
0 , a formula ψt defining exactly the language

h−1(t) ∩ (Σ+
1 Σ

+
2 )

∗. Then we will have, for any w ∈ Σ+,

h(w) = s ⇐⇒ w |=
∨

(s2,t,s1)∈Ts

∃z∃z′pre2(z) ∧ suf1(z
′) ∧ ϕ(<z)

s2,2
∧ ψ[z,z′]

t ∧ ϕ(>z′)
s1,1

.

(Note that some care needs to be taken in the disjuncts where one or more of the coordinates of

the triple (s2, t, s1) equal I, but we leave the details of this as an exercise.)

The rest of the proof shows that such formulas ψt indeed exist. We decompose h|(Σ+
1 Σ+

2 )∗ into

two functions, f and µ. For any w1w2 ∈ Σ+
1 Σ

+
2 , define f(w1w2) := h(w1w2) ∈ S0, and extend

this uniquely to a homomorphism f : (Σ+
1 Σ

+
2 )

∗ → S∗
0 . For example, if h(a) = s and h(b) = t with

s ̸= t, then f(a5b2ab3ab) is defined as the finite word (s5t2, st3, st) over the alphabet S0: each

element of the sequence is indeed in S0 because it starts with s = h(a). Write µ : S∗
0 → SI

0 for the

unique homomorphism extending the identity function S0 → S0. By the assumption that λh(a) is

not surjective, we have |S0| < |S|, so we know by the induction hypothesis H(|S0|) applied to µ

that µ−1(t) is first order definable for every t ∈ S0, and so is of course µ−1(I) = {ϵ}. We need to

show that h−1(t) ∩ (Σ+
1 Σ

+
2 )

∗ = f−1(µ−1(t)) is also first order definable for every t ∈ S0.

Let us first show that there exists, for any s ∈ S0, a first order formula blocks(x) such that:

w, p |= blocks(x) ⇐⇒ p is a first Σ1-position and h(w[p, p′]) = s,

where p′ is the subsequent last Σ2-position.

Indeed, first note that for a word of the form w = uv with u ∈ Σ+
1 and v ∈ Σ+

2 , we have h(w) = s

iff w |= θs, where

θs := ∃z, pre1(z) ∧
∨

{ϕ<z
s1,1

∧ ϕ≥z
s2,2

: (s1, s2) ∈ SI
1 × SI

2 such that s1s2 = s}.

Now blocks(x) can be defined by relativizing this formula to the definitions of ‘first Σ1 position’

and ‘last Σ2 position’, that is,

blocks(x) := first1(x) ∧ ∃x′, last2(x′) ∧ ∀y(x < y < x′ → ¬last2(y)) ∧ θ[x,x
′]

s .

Let t ∈ S0 and let χt be a first order sentence defining the language µ−1(t) in the alphabet S0.
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We replace in χt any occurrence of an atomic predicate s(x), for s ∈ S0, by the first order formula

blocks(x), and we call the resulting formula ψt. It then follows that a word w ∈ (Σ+
1 Σ

+
2 )

∗ satisfies

ψt iff f(w) ∈ µ−1(t), iff µ(f(w)) = t. It is easy to define (Σ+
1 Σ

+
2 )

∗ ⊆ Σ∗ in FO.

4 Green’s relations and fragments of first order logic

We will now show how low-level fragments of first order logic also correspond to semigroup prop-

erties. This will in particular require a somewhat finer study of the structure of finite semigroups.

The main result is Simon’s theorem, characterizing the languages definable in the fragment BΣ1

as those recognized by J -trivial semigroups.

4.1 Suffix-unambiguity and L-triviality

As a warm-up, we will consider the simpler case of L-trivial semigroups.

Definition 32. Let S be a semigroup. A subset I of S is a left ideal if for any s ∈ I, α ∈ S,

αs ∈ S. For any s ∈ S, the set

SIs := {αs : α ∈ SI}

is the smallest left ideal containing S.

For s, t ∈ S, we write t ≤L s if and only if t ∈ SIs. We write sLt iff s ≤L t and t ≤L s.

A semigroup S is called L-trivial iff the L-classes are singletons, i.e., for any s, t ∈ S, sLt
implies s = t.

We have the obvious analogous notions of right ideal, ≤R, R, and R-trivial.

Note that ≤L is a preorder that is right compatible, i.e., if t ≤L s then tβ ≤L sβ for any β ∈ S.

Also note that t ≤L s iff SIt ⊆ SIs, and thus sLt iff SIs = SIt.

Example 33. In the free semigroup Σ+, we have that u ≤L v iff v is a suffix of u. Consequently,

Σ+ is L-trivial and R-trivial.

In a group G, we have uLv (and uRv) for all u, v.
We also give a non-symmetric example. For any set X, define a semigroup LZ(X) on X by

x · y := x for all x, y ∈ X. Then, for any x, y ∈ X, we have xLy, because xy = x and yx = y, but

the semigroup LZ(X) is R-trivial, for if xβ = y for some β, then y = x. This is called the left

zero semigroup on X.

We note also that if 1 is a neutral element in a semigroup S, then s ≤L 1 (and s ≤R 1) for all

s ∈ S.

We now characterize the languages recognized by L-trivial semigroups. We do not actually give

a logic fragment in this case, but we just directly describe the languages recognized by L-trivial
semigroups; see Bojanczyk Section 2.3 for a connection with linear temporal logic.

Definition 34. Let Σ be a finite alphabet. We will call a sequence (Σ0, a1,Σ1, . . . , an,Σn) a suffix

prescription if Σ0, . . . ,Σn are subsets of Σ and for each 1 ≤ i ≤ n, ai ∈ Σ \ Σi. (In particular, we

must have Σi ⊊ Σ for 1 ≤ i ≤ n, but possibly Σ0 = Σ, and each Σi is allowed to be empty.)
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For w ∈ Σ+ we say that (u0, u1, . . . , un) is a valid decomposition (for this suffix prescription) of

w if w = u0a1u1 . . . anun and ui ∈ Σ∗
i for every 0 ≤ i ≤ n. (Here and in what follows, we interpret

∅∗ as {ϵ}.)
We write

L(Σ0, . . . ,Σn, a1, . . . , an) := Σ∗
0a1Σ

∗
1a2 · · · anΣ∗

n = {w ∈ Σ∗ : w has a valid decomposition},

and call this the left-simple language prescribed by the suffix prescription (Σ0, a1,Σ1, . . . , an,Σn).

We call a language L suffix unambiguous if it is a finite union of left-simple languages.

Lemma 35. A word w has at most one valid decomposition.

As for aperiodic semigroups, L-triviality may be characterized in an equational way. The fol-

lowing notation is useful for writing equations on finite semigroups. It is well-defined by Lemma 28.

Definition 36. Let S be a finite semigroup. We denote by ω(S) the smallest positive number ω

such that xω is idempotent for every x ∈ S.

When S is clear from the context, we write ω = ω(S). One may deduce from the proof of

Lemma 28 that ω(S) ≤ |S|!.

Lemma 37. A finite semigroup S is L-trivial, if, and only if, for every x, y ∈ S, (xy)ω = y(xy)ω.

In particular, finite L-trivial semigroups are aperiodic.

The nice thing about such an equational characterization is that the following kind of result

becomes obvious.

Proposition 38. Any homomorphic image, subsemigroup, or finite product of finite L-trivial
semigroups is again L-trivial.

Proof. Exercise; use Lemma 37.

Remark 39. In general, a collection of finite semigroups is called a pseudovariety if it is closed

under homomorphic images, subsemigroups, and finite products. The above proposition shows

that L-trivial semigroups form a pseudovariety, thanks to the equational characterization given

in Lemma 37. There is a general theory that shows that pseudovarieties of finite semigroups

(more generally, of finite algebraic structures) can always be characterized by “equations”, where

equation has to be interpreted in the correct way. See classical articles by Banaschewski, Eilenberg,

Reiterman, and more recent work by Gehrke, Grigorieff and Pin.

The following general example of an L-trivial semigroup will be useful in one direction of the

theorem.

Example 40. Let (X,≤) be a finite partially ordered set (i.e., ≤ is a reflexive, transitive, an-

tisymmetric relation on X). A contraction is a function f : X → X such that f(x) ≤ x for all

x ∈ X. Note that the set C(X,≤) of contractions on X is a submonoid of the monoid of End(X).

Here, we define the multiplication f · g to mean: first do g, then f .

Then C := C(X,≤) is L-trivial. Indeed, if f, f ′ ∈ C and αf = f ′ for some α ∈ C, then for any

x ∈ X we have f ′(x) = α(f(x)) ≤ f(x). Thus, f ′ ≤L f implies f ′ ≤ f pointwise. It follows that

f ′Lf implies f ′ = f pointwise.
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In fact, one may also prove that any L-trivial semigroup is isomorphic to a subsemigroup of

one of the form C(X,≤) (Exercise).

It follows, using Proposition 38, that any subsemigroup of C(X,≤) is also L-trivial. We can

now prove the crucial step in one direction of the characterization.

Proposition 41. Any left-simple language can be recognized by a finite L-trivial semigroup.

Theorem 42. Let L ⊆ Σ+ be a language. Then L is recognized by a finite L-trivial semigroup if,

and only if, L is suffix unambiguous.

4.2 Equations for J -triviality

We now come to J -trivial semigroups.

Definition 43. Let S be a semigroup. A subset J of S is a (two-sided) ideal if it is both a left and

a right ideal, equivalently, s ∈ J implies αsβ ∈ J for any α, β ∈ SI . The smallest ideal containing

an element s ∈ S is

SIsSI := {αsβ : α, β ∈ SI}.

We write s ≤J t iff s ∈ SItSI , and sJ t if both s ≤J t and t ≤J s. A semigroup is J -trivial if

sJ t implies s = t.

Remark 44. The relation ≤H is defined as the intersection of L and R. Aperiodicity is the same

as H-triviality. One direction follows from Proposition 29, the other is left as an exercise.

Note that in any semigroup S, and for any n ≥ 1, x, y ∈ S, we have

(xy)n+1 = x(yx)ny. (switch)

The following can be proved with the argument that we already saw in Lemma 37 above.

Lemma 45. For any x, y ∈ S,

y(xy)ω L (xy)ω R (xy)ωx.

We say that S is J -, R- or L-trivial if the corresponding pre-order is antisymmetric and we

say that S is aperiodic if xωx = xω for all x ∈ S.

Proposition 46. The following are equivalent for any finite semigroup S:

1. S is J -trivial;

2. S is both L-trivial and R-trivial;

3. S is aperiodic and for all x, y ∈ S, (xy)ω = (yx)ω.

4. for all x, y ∈ S, (xy)ωx = (xy)ω = y(xy)ω;

We conclude in particular that finite J -trivial monoids form a pseudovariety, see Remark 39

above.
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4.3 Simon’s Theorem

We say that a sentence ϕ of first order logic is BΣ1 if it is a Boolean combination of formulas of

the form ∃x1 . . . ∃xnψ with ψ quantifier free.

Theorem 47 (I. Simon). A language L ⊆ Σ∗ is definable by a BΣ1 sentence if, and only if, the

syntactic monoid of L is J -trivial.

A useful intermediate step in proving this theorem will be giving another characterization of

the BΣ1-definable languages: they are the piecewise testable ones.

Definition 48. When u = a1 . . . an is a word, we define

L(u) := Σ∗a1Σ
∗a2 . . .Σ

∗anΣ
∗.

(In particular, L(ϵ) := Σ∗.) When v ∈ L(u), we say that u is a subword of v, and we write ↓v for

the set of subwords of v, which is clearly finite. For w,w′ ∈ Σ∗, we define

w ⪯k w
′ ⇐⇒ ↓w ∩ Σ≤k ⊆ ↓w′ ∩ Σ≤k,

and w ∼k w
′ iff w ⪯k w

′ and w′ ⪯k w. We call a language (finitely) piecewise testable if it is a

(finite) union of ∼k-classes, for some k ≥ 0.

We leave the equivalence of BΣ1 definability and piecewise testability as a (to be guided)

exercise.

One direction of Simon’s theorem is given by the following lemma.

Lemma 49. For any k ≥ 0, the quotient Σ∗/∼k is a finite J -trivial monoid.

Finally, the difficult direction of Simon’s theorem.

Proposition 50. If a language L is recognized by a finite J -trivial monoid, then it is piecewise

testable.

The following proof is based on a proof given by Howard Straubing (private communication),

combined with ideas found in the book of Jean-Éric Pin cited below.

We will need two lemmas.

Lemma 51. For any k ≥ 0, there exists m ≥ k such that for any w ∈ Σ∗, there is a subword

w′ ⊆ w such that w ∼k w
′ and |w′| ≤ m.

Proof. Define m := |Σ∗/∼k|. We prove the statement by induction on the length of w ∈ Σ∗. If

|w| ≤ m, we may take w′ = w. Suppose now |w| > m. For 1 ≤ i ≤ |w|, denote by wi the prefix of

w of length i. By the pigeon-hole principle, there are 1 ≤ i < j ≤ |w| such that wi ∼k wj . Write

w = wjβ for some β ∈ Σ∗. Then

w = wjβ ∼k wiβ.

Since wiβ is strictly shorter than w, pick w′ ⊆ wi of length at most n such that w′ ∼k wiβ. Then

w′ is still a subword of w and it is k-equivalent to w.
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When M is a J -trivial monoid, we define its J -height h(M) to be the length of the longest

strict J -chain in M .

Lemma 52. Let M be a J -trivial monoid and f : Σ∗ → M . For any u, v ∈ Σ∗ and a ∈ Σ, if

uv ∼2h(M)−1 uav, then f(uv) = f(uav).

Proof. Write n := h(M) and k := 2n − 1 and suppose uv ∼k uav. Note that either u ∼n ua or

av ∼n v: if to the contrary neither of these hold, pick x ⊆ ua and y ⊆ av of length ≤ h(M) with

x ̸⊆ u and y ̸⊆ v. Then x = u′a with u′ ⊆ u and y = av′ with v′ ⊆ v. Thus, u′av′ is a subword of

uav, but it can not be a subword of uv.

Without loss of generality, suppose u ∼n ua. Note that in particular u ̸= ϵ since n ≥ 1. We

will show that f(u) = f(ua).

Write ua = a1a2 · · · akak+1, so that in particular ak+1 = a. For 1 ≤ i ≤ k + 1, we say that i is

a falling point if f(a1 · · · ai−1) >J f(a1 · · · ai). In particular, we say that i = 1 is a falling point

if f(a1) <J f(1) = 1. Note that for any i < j, we have f(a1 . . . ai) = f(a1 . . . aj) iff there is no

falling point in [i+ 1, j]. Our goal is to prove that k + 1 is not a falling point.

Let {i(1) < · · · < i(p)} be the totally ordered set of falling points in ua. If p = 0 then f(ua) = 1

so f(u) = 1 by J -triviality. We thus assume p > 0 and we use as a notational convention i(0) := 0.

Since 1 <J f(a1 . . . ai(1)) <J · · · <J f(a1 . . . ai(p)) we have p+ 1 ≤ h(M) = n.

We show that for each falling point i(r), where 1 ≤ r ≤ p, there is no occurrence of ai(r) in the

interval (i(r − 1), i(r)). Suppose towards a contradiction that i(r − 1) < j < i(r) and aj = ai(r).

Since there is no falling point in [j, i(r)− 1], we must have f(a1 · · · ai(r)−1) = f(a1 · · · aj−1). Thus

f(a1 · · · aj−1aj) = f(a1 · · · aj−1)f(aj)

= f(a1 · · · ai(r)−1)f(ai(r))

<J f(a1 · · · ai(r)−1)

= f(a1 · · · aj−1)

which shows that j should have been a falling point in the first place.

Finally, we show that i(p) ̸= k + 1. Since p ≤ n − 1 and ua ∼n u, the word u′ :=
∏p

r=1 ai(r),

which is by definition a subword of ua, is also a subword of u. Let j(1) < · · · < j(p) be indices

in u such that the subword on these indices is u′. Then j(1) ≥ i(1) because we showed above

that the letter ai(1) does not appear in u before i(1). Inductively, for any 1 < r ≤ p, given that

j(r − 1) ≥ i(r − 1), we also have j(r) ≥ i(r): since j(r) > j(r − 1) ≥ i(r − 1), and the letter

aj(r) = ai(r) does not appear strictly between i(r − 1) and i(r), we must have j(r) ≥ i(r). Hence

j(p) ≥ i(p), but j(p) ≤ k, so i(p) ̸= k + 1.

Proof of Proposition 50. Let M be a finite J -trivial monoid and let f : Σ∗ → M be a homomor-

phism. Choose m as in Lemma 51 for k := 2h(M) − 1. We will show that ∼m ⊆ ker(f), which

clearly suffices. Suppose w1 ∼m w2. Pick a subword w′ of w such that w′ ∼k w1 and |w′| ≤ n.

Then w′ is also a subword of w2 since w1 ∼m w2. Moreover, w′ ∼k w1 ∼m w2 implies w′ ∼k w2,

since m ≥ k. Thus, for i = 1, 2, since w′ can be obtained from wi by repeatedly removing letters,

while staying ∼k-equivalent, we see by repeated applications of Lemma 52 that f(w′) = f(wi).

Hence, f(w1) = f(w2).
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1. Jean-Éric Pin’s book Mathematical Foundations of Automata Theory,

2. Mikolaj Bojanczyk’s book Languages recognised by finite semigroups and their generali-

sations to objects such as trees and graphs, with an emphasis on definability in monadic

second-order logic,

3. Howard Straubing’s book Finite Automata, Formal Logic, and Circuit Complexity,

4. John Rhodes and Benjamin Steinberg’s book The q-theory of finite semigroups,

5. Mai Gehrke’s lecture notes on the topic, which will soon be available as chapter 8 of our

joint book Topological Duality for Distributive Lattices: Theory and Applications.

I have learned much of the material in these notes from the authors mentioned above, and also

from discussions with Thomas Colcombet. Jérémie Marques also helped in further clarifying the

proof of Simon’s Theorem.

16

https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.mimuw.edu.pl/~bojan/papers/algebra-26-aug-2020.pdf
https://www.mimuw.edu.pl/~bojan/papers/algebra-26-aug-2020.pdf
https://www.mimuw.edu.pl/~bojan/papers/algebra-26-aug-2020.pdf
https://link.springer.com/book/10.1007/978-1-4612-0289-9
https://link.springer.com/book/10.1007/b104443
https://arxiv.org/abs/2203.03286

	Automata and monoids
	Automata and logic
	First order logic and aperiodicity
	Rank equivalence
	Syntactic congruence
	Schützenberger's Theorem

	Green's relations and fragments of first order logic
	Suffix-unambiguity and L-triviality
	Equations for J-triviality
	Simon's Theorem


