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A question

You forgot your digicode. The keypad lets you enter a sequence of
any length. As soon as the correct code appears, the door opens.
What sequence do you enter?
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The start of an answer
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Aim of the talk

The aim of this talk is to explain what de Bruijn graphs are, and

how they relate to a problem of unifiability in logic.

We will see that the connection is made by Stone duality, a general

theory for linking syntax and semantics.
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Overview

De Bruijn graphs
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de Bruijn graphs

The de Bruijn graph By(X) of order d over alphabet X is the
deterministic automaton that ‘remembers the last d letters’.
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de Bruijn graphs

The de Bruijn graph By(X) of order d over alphabet X is the
deterministic automaton that ‘remembers the last d letters’.

For example, when d = 3 and ¥ = {0,1}:

001 1 » 011
N 1 N
~
02000 1 010 101 0 1111
 ~—

N/ 0 X/

100 110
0

Named for N. G. de Bruijn (1946), also invented by I. J. Good (1946), implicit in C. Flye Sainte-Marie (1894), and
also in ancient Sanskrit prosody; see Knuth, vol. 4A, 7.2.1.7, p. 489.

4/29


https://wsdwnb.win.tue.nl/

Graphs
Fix a finite alphabet X.
Definition
A Y -edge-labeled directed graph consists of:
» a set of vertices V,

> for each a € ¥, an edge relation = C V2.

Example
For any d > 1, the de Bruijn graph of order d, B4(X), has
> set of vertices Y9,
» for each a€ X and w € ¥, a labeled edge
w - w'a

where w’ is the length d — 1 suffix of w.
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Graph homomorphisms

A homomorphism from a graph G to a graph H is a function from

Vi to Vi that preserves labeled edges.

6/29



Homomorphism from a de Bruijn graph

Is there a homomorphism from B,({0,1}) to the graph G?

0,1
M

, 0
S
01— 000 de—"—b

N

1@11—>10 13c

1
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Homomorphism from a de Bruijn graph

Is there a homomorphism from B({0,1}) to the graph G?

0,1 0
(1 0 (1
01<—00;>o de———b
1
0
\ O ]
11— 370 1c¢cg “a
1
B>({0,1}) — G
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Homomorphism from a de Bruijn graph

Is there a homomorphism from B,({0,1}) to the graph G?

0,1 0
(1 0 (1
01<—00;>o de———b
1
0
\ O ]
11— 370 1c¢cg “a
1
B>({0,1}) — G

» The codomain graph may fail to be deterministic in general.

» There may be more than one homomorphism.
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Homomorphism from a de Bruijn graph?

Is there a homomorphism from B({0,1}) to the graph H?

01+t 000 0

61 o
x OQX@YDI
111 —2% 30 1

B>({0,1}) H
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Homomorphism from a de Bruijn graph?

Is there a homomorphism from B({0,1}) to the graph H?

01T 000 0
61 o
dei/m >z %ofy
1211 —2 S 1
B>({0,1}) H

Is there a homomorphism from B4({0,1}) to H for some d?
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Homomorphism from a de Bruijn graph?

Is there a homomorphism from B({0,1}) to the graph H?
01 — 00 >0 0

m
x 0CxZT2zZ 2yl
U
1

1@11—>10

B>({0,1}) H

Is there a homomorphism from B4({0,1}) to H for some d?

How can you be sure that there is none?
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Homomorphism from a de Bruijn graph?

Is there a homomorphism from B({0,1}) to the graph H?
01 — 00 >0 0

m
x 0CxZT2zZ 2yl
U
1

1@11—>10

B>({0,1}) H

Is there a homomorphism from B4({0,1}) to H for some d?
How can you be sure that there is none?

How to decide this for a general graph?
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The de Bruijn graph mapping problem

Fix a finite alphabet .

Problem (de Bruijn graph mapping)

INPUT. A finite X-edge-labeled directed graph G.
OUuTPUT.

» a number d > 1 and a homomorphism By — G, or

> ‘impossible’ if none exists.

We usually consider the surjective version of the problem, which is

at least as hard.
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Overview

Unifiability

9/29



The unifiability problem

We arrived at this problem because of a problem in temporal logic:

Problem (Unifiability in temporal logic of next)

INPUT. A formula ¢ in the temporal logic of next.
OUTPUT.

» a unifier for ¢, or

» ‘impossible’ if none exists.
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Unifiers defined

Two sets: variables V = {x,y, ...}, constants C = {p1, p2,... }.
A formula is an expression built from these with Vv, =, L, and X.

The depth of a formula is the maximum nesting depth of X in it.

A unifier of a formula ¢(x,y,...) is a substitution
X O0x, Y m2 0yyovny
where, for each x € V, o is a formula, such that
o(x = ox,y = 0oy,...)

is a valid formula.
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Validity defined

There are two equivalent views on validity in the logic of next:

» Syntactic: A formula ¢ is valid if the equation ¢ = T follows
from the rules of Boolean logic, together with

X(p1Vp2) =Xp1 V Xpa,  X(=p) = -Xp, and XT =T.

> Semantic: A formula ¢ is valid if it evaluates to true in all
deterministic transition systems. X is evaluated as ‘next ¢’

XXx Xx X

The other connectives are evaluated locally at each state.

The equivalence is called the completeness theorem for the logic.
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Examples

Is this formula unifiable?

[x & (+Xp AXX(x VY] Aly ¢ (x = p)]
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Examples

Is this formula unifiable?
[x ¢+ (=Xp AXX(x VYD Ay  (x = p)]
It can be seen as a system of equations

x ==XpAXX(xVy)

y=x-=p
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Examples

Is this formula unifiable?
[x ¢+ (=Xp AXX(x VYD Ay  (x = p)]
It can be seen as a system of equations

x ==XpAXX(xVy)

y=x-=p

The (unique, in this case) unifier: x — = Xp, y — p V Xp.
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Examples

Is this formula unifiable?
[x ¢+ (=Xp AXX(x VYD Ay  (x = p)]
It can be seen as a system of equations

x ==XpAXX(xVy)

y=x-=p

The (unique, in this case) unifier: x — = Xp, y — p V Xp.

Negative example: x <> =Xx does not have a unifier.
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Unifiers and de Bruijn graph homomorphisms

Let ¢ be a formula in the logic of next.

We construct a finite graph G(i) with edge-labels in ¥ := 2¢.
(This can take up to O(exp(|¢|)) time.)

Theorem (v.G. & Marti, 2023)

The set of =-classes of depth < d ground unifiers of ¢
is in bijection with

the set of homomorphisms from B4(2¢) to G().

The depth of o is the maximum depth of the formulas oy.
A unifier ¢ is ground if no variables are used in any oy.

Unifiers o and o’ are equivalent if o = o/, for all x.
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Example of the graph associated to a formula

¢ 1 [x & =Xp]Aly ¢ (x = p)]

R E— Xyp O

N

Ry ——2 S RYB

G(p)
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Example of the graph associated to a formula

¢ 1 [x & =Xp]Aly ¢ (x = p)]

p—L L xpp 0

X

1 Ryp ——— xyp

G(¢p) reversed
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Example of the graph associated to a formula

¢ 1 [x & =2Xp]Aly ¢ (x = p)]

xyp—L L x7p 0

N

1 Xyp —2  Txp

G(p) reversed
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Example of the graph associated to a formula

¢ 1 [x e =2Xp]Aly ¢ (x = p)]

X}’P—> Xyp D0

N

1 Sy 2 Syp

G(¢p) reversed
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Example of the graph associated to a formula

¢ [x o = Xp| Ay < (x = p)]

R E— Xyp D

N

1 ayp— 2 S 3yp
G(p)

The graph G(¢) is an image of By, so ¢ is unifiable.
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The more general picture: Equational Unification

Let V be a variety of algebras in a signature 7.
Problem (Unifiability in V)

Given a finite set E of T-equations
S(X1y ..oy Xn) R (X1, .0y Xn)
does there exist a substitution x; — u; such that

V E=s(uy,...,up) = t(u,...up)

foreachs~tinE?

16/29



Unifiability and finitely presented algebras

Problem (Unifiability in V, algebraic version)

Given a finitely presented algebra A in V, does there exist a

homomorphism from A to Fy(0)?

A finite set of T-equations E gives a finitely presented algebra
A= Fy(xi,...,xn)/{E)con »

and a ground unifier is a homomorphism A — Fy(0).

Idea: It is sometimes useful to dualize this problem

and to use stratification of the free algebras.

(Ghilardi 1999, Ghilardi & Zawadowski 2002)
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An open problem: Unifiability for modal algebras

A modal algebra is a tuple (B, ), with B a Boolean algebra and a
function ¢ : B — B such that, for all a, b € B,

O(avb)=0aVvOband 0L = 1.

The unifiability problem for modal algebras is open.

Its unification type is nullary (Jerabek 2011) and slight extensions
have undecidable unification (Wolter & Zakharyashev 2006).
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Our result: Unifiability for pointed dMA's
A modal algebra (B, X) is deterministic if, for every a € B,

X—-a=-Xa.

A pointed dMA is a tuple (B, X, ¢), where (B, X) is a deterministic
modal algebra, and ¢ € B.

Theorem (Marti, v.G., Sweering 2024)
Unifiability is decidable for pointed dMA's.

Proof.
Duality + decide the de Bruijn graph mapping problem! O
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Overview

Stone duality
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Stone duality: The big picture

categorical dual equivalence

>

algebra topology

problems in logic
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A textbook treatment

Topological
Duality for

Distributive
Lattices

1009 NVA ONV 302H3ID

Theory and
Applications

Mai Gehrke and
Sam van Gool

AOATIRYD

M. Gehrke and SvG, Topological Duality for Distributive Lattices, Cambridge University Press (2024).
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Boolean algebras
For any set X, the power set P(X) is a Boolean algebra, i.e.,
its operations U, N and ()¢ precisely obey the rules of Vv, A, and —.

Moreover, any function f: X — Y gives rise to a Boolean algebra

homomorphism in the other direction:

P(X) i X
£ f
P(Y) y

Thus, we have a functor P: Set — BA°P.
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Stone representation for Boolean algebras

Theorem (Stone, 1936)
For any Boolean algebra B, the homomorphism

(=): B—=P(Hom(B,2)), b~ {x:x(b)=1}

is injective.
Moreover, the topology 7 on spec(B) := Hom(B, 2) generated by
the image of (—) is Boolean, and B = { clopens of spec(B) }.

(A Boolean space is a compact space in which any distinct points are

separable by a clopen.)

Example

For any set V, spec(Fga(V)) is the Cantor space 2V
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Morphisms

Every homomorphism of Boolean algebras arises from a unique

continuous function of spaces:

B spec B
A spec A

>
>
*

We get an equivalence functor spec: BA°? — BoolSp.
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Morphisms

Every homomorphism of Boolean algebras arises from a unique

continuous function of spaces:

B spec B
A spec A

>
>
*

We get an equivalence functor spec: BA°? — BoolSp.

This is how we find unifiers: A unifier is a Boolean algebra
homomorphism, so it must arise from a continuous function!
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Boolean unification via duality
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Boolean unification via duality

2

(X1 VAN —|X2) V (X2 N X3) =T
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Boolean unification via duality
011 111
. : )

(X1 VAN —|X2) V (X2 N X3) =T

010 110

B(Xl,X27X3) et s 101

000 - 100
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Boolean unification via duality

011 — 111
Gan—x)V(eAx) =T _. 2
010 110
%)
B(Xl, X2, X3) - 001 / 101
000 i 0w~ 5
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Boolean unification via duality

. o ——————— 1
(Can—)V0eAx) =T _. =
' 010 110
@ I
B(Xl,X2,X3) i P 001 / 101
' 000 100 @)
o I
B(Y17Y2) :
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Boolean unification via duality

, 011 S — 111
, ! . 2 ]
(aA-x)ViaAx) =T _.
' 010 110
@ I
1
1
|
1
1
B(x1, X2, X3) | e o
' 000 100 @)
|
1
o ! ]’*

1
1
: 10 11

B(Y17Y2) :
1
: 00 01
1
1
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Boolean unification via duality

! S0 ————— 1
(1 A —x2) V (x2 A x3) T ! _ Vé.~
' 010 110
? !
B(Xl,X2,X3) i P 001 / 101
! 000 00 7 3
o E W(T*
: 10 11
B(Y17Y2) :
: 00 01
0(90) =T — im(U*) co
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Stone duality for (free) pointed dMA's
A pointed dMA is a tuple (B, X, ¢), where X: B — B is a Boolean

homomorphism and ¢ € B.

The dual category consists of tuples (X, f, K) where X is a
Boolean space, f: X — X is continuous, and K C X is clopen.
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Stone duality for (free) pointed dMA's
A pointed dMA is a tuple (B, X, ¢), where X: B — B is a Boolean

homomorphism and ¢ € B.

The dual category consists of tuples (X, f, K) where X is a
Boolean space, f: X — X is continuous, and K C X is clopen.

Proposition

Let V a set of variables, F(V) the free pointed dMA on V. Then

specF(V) = (X¥,s,c), where

> ¥ :=2VU{c} the local valuations over variables and constant:
> s: Y% — ¥, the shift map, sends (u;)72, to (1),

> c={ueXx¥| uc)=1}.
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Unifiers via duality

Let ¢ be a formula in variables V, WLOG of depth < 1.

There are bijections between the following sets:

| 2

>

=-classes of ground unifiers of ¢ of depth < d;

algebra homomorphisms o: F(V) — F(0) such that each o(x)
is of depth < d and o(p) = T;

continuous shift-invariant maps h: 2 — ¥ with modulus of

continuity d, and im(h) C @;

de Bruijn graph homomorphisms Bg(2) — G().
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Admitting homomorphisms from de Bruijn graphs

Theorem (v.G., Marti, Sweering 2024)

For any finite graph G = (Vg, Eg), the following are equivalent:
1. there exist d > 1 and a surjective homomorphism B4(2) — G;
2. the graph G is cycle-connected and power-connected.

Condition (2) can be verified in time O(exp(|Vg| + |Egl))-

Corollary

Unifiability for pointed dMA's is decidable in 2-exponential time.
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Take-aways

» De Bruijn graphs can open doors.

» Unification problems are hard to solve ad hoc.

» Stone duality can give a principled approach for solving them.
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Take-aways

» De Bruijn graphs can open doors.

» Unification problems are hard to solve ad hoc.

» Stone duality can give a principled approach for solving them.

Thank you.
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Further references

» van Gool & Marti, Modal unification step by step (2023).

» Gehrke & van Gool, Topological Duality for Distributive Lattices:
Theory and Applications (2024).

» Baader & Ghilardi, Unification in Modal and Description Logics
(2011).

Credits:
» Digicode picture: Wikipedia, user D4mlen, CC BY-SA 3.0.

» De Bruijn sequence (k = 12, n = 4) generated using code by Joe
Sawada.
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Appendix
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Power-connectedness: intuition

The de Bruijn graphs possess a very strong connectedness

property, which transfers to images: By is power-connected.
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Power-connectedness: intuition

The de Bruijn graphs possess a very strong connectedness
property, which transfers to images: By is power-connected.

Intuitively: “You can find out where you are within d steps’.
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Power-connectedness: intuition

The de Bruijn graphs possess a very strong connectedness
property, which transfers to images: By is power-connected.

Intuitively: “You can find out where you are within d steps’.
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Power-connectedness defined

Let H = (Vy, Ey) be a X-graph.

» A node u € Vy is a predecessor of a set S C Vy if, for every
letter a € X, there exists s € S such that u = s.
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Let H = (Vu, En) be a X-graph.

» A node u € Vy is a predecessor of a set S C Vy if, for every
letter a € X, there exists s € S such that u = s.

> A set C C Vy is closed if it contains all of its predecessors.

Let G = (Vg, Eg) be a X-graph.
» The power graph of G is the graph with nodes P(V;) and

S3A T «— VxeS,3ye Tsuchthat x S¢y .

» G is power-connected if, in its power graph, the node Vi is in
the closure of the set of nodes {{u} : ve Vs}.
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Cycle-connectedness: intuition

A second very strong connectedness property of de Bruijn graphs:
We have arbitrarily long cycles, reachable from anywhere.
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Cycle-connectedness defined

Let G = (Vg, Eg) be a X-graph and let w € T,

> A w-cycle is a path u = u, for some u € V.

> A w-cycle u 2 u'is reachable if there exists k > 1 such that

k
for every node v, there is a path v = u.

» G is cycle-connected if, for every w € ¥ T, there exists a

reachable w-cycle.
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Answer for d = 2

The following ‘hamburger’ graph is not an image of By:

0
0,1 0,1
0 xT 2z 2y ol
0,1 0,1
1

» In By, we have 00 Lot 11; a homomorphism must map
thistoxi>z—1>y.
» Similarly, 11 %10 % 00 must gotoy % z%x

» But now the edge 10 L 01 is not preserved: z 7£> z.
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Another example

Why can the following ‘cone of fries’ graph not admit a
homomorphism from any B;?

Z%y

0,1 0,1

X1

(This is a small example of a graph that is ‘power-connected’ but not ‘cycle-connected’, witnessing the
independence of the two conditions in our characterization of images of de Bruijn graphs.)
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Explanation

Suppose given an oracle for the surjective version. We solve the
non-surjective version as follows.

For every subgraph G’ of G, use the oracle for the surjective version
to decide if a surjective homomorphism onto G’ exists. If so,
return this homomorphism, now viewed as a homomorphism to G.
If the oracle for the surjective version always answers ‘impossible’,
return impossible.

This is correct, because if some homomorphism h to G exists, then
it will be surjective onto the subgraph im(h).
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Explanation

Suppose ¢ were a formula such that ¢ <+ =X is valid.

Consider the transition system with a single state, which is its own

successor, and any valuation of the variables.

If ¢ evaluates to true in this transition system, then =Xy evaluates

to true as well, by assumption on ¢.

But then, by definition of the valuation, X¢ should evaluate to
false, so ¢ should evaluate to false.

The other case follows by symmetry.
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