
Solving temporal equations

by folding de Bruijn graphs

Sam van Gool, Johannes Marti and Michelle Sweering

IRIF Université Paris Cité, University of Zürich, and CWI Amsterdam

ATLAS, Rennes, 25 April 2024



de Bruijn graphs

The de Bruijn graph Bd(Σ) of dimension d over alphabet Σ is the

deterministic automaton that ‘remembers the last d letters’.

For example, when d = 3 and Σ = {0, 1}:

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

The de Bruijn graph B3({0, 1})

2 / 22



de Bruijn graphs

The de Bruijn graph Bd(Σ) of dimension d over alphabet Σ is the

deterministic automaton that ‘remembers the last d letters’.

For example, when d = 3 and Σ = {0, 1}:

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

The de Bruijn graph B3({0, 1})

2 / 22



Homomorphisms of de Bruijn graphs

A homomorphism is a vertex function that preserves labeled edges.

For example, a homomorphism from B2(Σ) to a graph G :

1011

01 00
1

1
1

0
0

0

1
0

a

d

c

b

1

1

0

0

0

0, 1

1

B2 G

Note:

▶ The codomain graph may fail to be deterministic.

▶ There may be more than one homomorphism.

3 / 22



Homomorphisms of de Bruijn graphs

A homomorphism is a vertex function that preserves labeled edges.

For example, a homomorphism from B2(Σ) to a graph G :

1011

01 00
1

1
1

0
0

0

1
0

a

d

c

b

1

1

0

0

0

0, 1

1

B2 G

Note:

▶ The codomain graph may fail to be deterministic.

▶ There may be more than one homomorphism.

3 / 22



Homomorphisms of de Bruijn graphs

A homomorphism is a vertex function that preserves labeled edges.

For example, a homomorphism from B2(Σ) to a graph G :

1011

01 00
1

1
1

0
0

0

1
0

a

d

c

b

1

1

0

0

0

0, 1

1

B2 G

Note:

▶ The codomain graph may fail to be deterministic.

▶ There may be more than one homomorphism.

3 / 22



Homomorphisms of de Bruijn graphs

A homomorphism is a vertex function that preserves labeled edges.

For example, a homomorphism from B2(Σ) to a graph G :

1011

01 00
1

1
1

0
0

0

1
0

a

d

c

b

1

1

0

0

0

0, 1

1

B2 G

Note:

▶ The codomain graph may fail to be deterministic.

▶ There may be more than one homomorphism.
3 / 22



A decision problem

Problem (de Bruijn graph mapping problem)

Given a finite edge-labeled graph G = (VG ,EG ), do there exist

d ≥ 1 and a homomorphism Bd(Σ) → G?

4 / 22



Temporal equations

We arrived at this problem because of a problem in temporal logic:

Problem (Unifiability in temporal logic of next)

Given a system of equations in the temporal logic of next X, does

it have a unifier in this logic?

5 / 22



Unifiers defined

Let x , y , . . . be variables and p1, p2, . . . be propositional constants.

A formula is an expression built from these with ∨, ¬, ⊥, and X.

A unifier of a formula φ(x , y , . . . ) is a substitution x 7→ σx ,

y 7→ σy , . . . , where the σ’s are variable-free formulas, and such

that φ(σx , σy , . . . ) is a valid formula.

The depth of a substitution is the maximum nesting of X in the

formulas σx , for x a variable.

6 / 22



Unifiers defined

Let x , y , . . . be variables and p1, p2, . . . be propositional constants.

A formula is an expression built from these with ∨, ¬, ⊥, and X.

A unifier of a formula φ(x , y , . . . ) is a substitution x 7→ σx ,

y 7→ σy , . . . , where the σ’s are variable-free formulas, and such

that φ(σx , σy , . . . ) is a valid formula.

The depth of a substitution is the maximum nesting of X in the

formulas σx , for x a variable.

6 / 22



Unifiers defined

Let x , y , . . . be variables and p1, p2, . . . be propositional constants.

A formula is an expression built from these with ∨, ¬, ⊥, and X.

A unifier of a formula φ(x , y , . . . ) is a substitution x 7→ σx ,

y 7→ σy , . . . , where the σ’s are variable-free formulas, and such

that φ(σx , σy , . . . ) is a valid formula.

The depth of a substitution is the maximum nesting of X in the

formulas σx , for x a variable.

6 / 22



Temporal equations

Problem (Unifiability in temporal logic of next)

Given a system of equations in the temporal logic of next X, does

it have a unifier in this logic?

For example, the systemx = ¬Xp ∧XX(x ∨ y)

y = x → p

gives the formula

[x ↔ (¬Xp ∧XX(x ∨ y))] ∧ [y ↔ (x → p)]

which has a (unique) unifier: x 7→ ¬Xp, y 7→ p ∨Xp.

Negative example: x ↔ ¬Xx does not have a unifier. (Why?)

7 / 22



Temporal equations

Problem (Unifiability in temporal logic of next)

Given a system of equations in the temporal logic of next X, does

it have a unifier in this logic?

For example, the systemx = ¬Xp ∧XX(x ∨ y)

y = x → p

gives the formula

[x ↔ (¬Xp ∧XX(x ∨ y))] ∧ [y ↔ (x → p)]

which has a (unique) unifier: x 7→ ¬Xp, y 7→ p ∨Xp.

Negative example: x ↔ ¬Xx does not have a unifier. (Why?)

7 / 22



Temporal equations

Problem (Unifiability in temporal logic of next)

Given a system of equations in the temporal logic of next X, does

it have a unifier in this logic?

For example, the systemx = ¬Xp ∧XX(x ∨ y)

y = x → p

gives the formula

[x ↔ (¬Xp ∧XX(x ∨ y))] ∧ [y ↔ (x → p)]

which has a (unique) unifier:

x 7→ ¬Xp, y 7→ p ∨Xp.

Negative example: x ↔ ¬Xx does not have a unifier. (Why?)

7 / 22



Temporal equations

Problem (Unifiability in temporal logic of next)

Given a system of equations in the temporal logic of next X, does

it have a unifier in this logic?

For example, the systemx = ¬Xp ∧XX(x ∨ y)

y = x → p

gives the formula

[x ↔ (¬Xp ∧XX(x ∨ y))] ∧ [y ↔ (x → p)]

which has a (unique) unifier: x 7→ ¬Xp, y 7→ p ∨Xp.

Negative example: x ↔ ¬Xx does not have a unifier. (Why?)

7 / 22



Temporal equations

Problem (Unifiability in temporal logic of next)

Given a system of equations in the temporal logic of next X, does

it have a unifier in this logic?

For example, the systemx = ¬Xp ∧XX(x ∨ y)

y = x → p

gives the formula

[x ↔ (¬Xp ∧XX(x ∨ y))] ∧ [y ↔ (x → p)]

which has a (unique) unifier: x 7→ ¬Xp, y 7→ p ∨Xp.

Negative example: x ↔ ¬Xx does not have a unifier.

(Why?)

7 / 22



Temporal equations

Problem (Unifiability in temporal logic of next)

Given a system of equations in the temporal logic of next X, does

it have a unifier in this logic?

For example, the systemx = ¬Xp ∧XX(x ∨ y)

y = x → p

gives the formula

[x ↔ (¬Xp ∧XX(x ∨ y))] ∧ [y ↔ (x → p)]

which has a (unique) unifier: x 7→ ¬Xp, y 7→ p ∨Xp.

Negative example: x ↔ ¬Xx does not have a unifier. (Why?)
7 / 22



Unifiers and homomorphisms

For any formula φ, with propositional constants in a finite set C ,

we compute a certain finite graph G (φ) with a 2C -labeling on the

edges, and we prove:

Theorem

The set of depth ≤ d unifiers of φ

is in bijection with

the set of homomorphisms from Bd(2
C ) to G (φ).

In particular, decidability of the de Bruijn graph mapping problem

implies decidability of the unifiability problem.

(It is in fact equivalent.)

8 / 22



Unifiers and homomorphisms

For any formula φ, with propositional constants in a finite set C ,

we compute a certain finite graph G (φ) with a 2C -labeling on the

edges, and we prove:

Theorem

The set of depth ≤ d unifiers of φ

is in bijection with

the set of homomorphisms from Bd(2
C ) to G (φ).

In particular, decidability of the de Bruijn graph mapping problem

implies decidability of the unifiability problem.

(It is in fact equivalent.)

8 / 22



Unifiers and homomorphisms

For any formula φ, with propositional constants in a finite set C ,

we compute a certain finite graph G (φ) with a 2C -labeling on the

edges, and we prove:

Theorem

The set of depth ≤ d unifiers of φ

is in bijection with

the set of homomorphisms from Bd(2
C ) to G (φ).

In particular, decidability of the de Bruijn graph mapping problem

implies decidability of the unifiability problem.

(It is in fact equivalent.)

8 / 22



Example of the graph associated to a formula

φ : [x ↔ ¬Xp] ∧ [y ↔ (x → p)]

x̄y p̄x̄yp

xyp xȳ p̄
1

1
1

0
0

0

1
0

G (φ)

9 / 22



Example of the graph associated to a formula

φ : [x ↔ ¬Xp] ∧ [y ↔ (x → p)]

x̄y p̄x̄yp

xyp xȳ p̄
1

1
1

0
0

0

1
0

G (φ) reversed

9 / 22



Example of the graph associated to a formula

φ : [x ↔ ¬Xp] ∧ [y ↔ (x → p)]

x̄y p̄x̄yp

xyp xȳ p̄
1

1
1

0
0

0

1
0

G (φ) reversed

9 / 22



Example of the graph associated to a formula

φ : [x ↔ ¬Xp] ∧ [y ↔ (x → p)]

x̄y p̄x̄yp

xyp xȳ p̄
1

1
1

0
0

0

1
0

G (φ) reversed

9 / 22



Example of the graph associated to a formula

φ : [x ↔ ¬Xp] ∧ [y ↔ (x → p)]

x̄y p̄x̄yp

xyp xȳ p̄
1

1
1

0
0

0

1
0

G (φ) reversed

The graph G (φ) is an image of B2 (in a unique way).

9 / 22



Deterministic de Bruijn graph images

Let Σ a finite alphabet and G a Σ-labeled graph.

Definition

A graph G is an image if there exist d ≥ 1 and a surjective

homomorphism Bd(Σ) ↠ G .

Observation: It suffices to characterize images.

Definition

▶ A node u of G is a w -sink, for w ∈ Σ∗, if, for every node x of

G , we have a path x
w→ u.

▶ G is d-synchronizing, for d ≥ 1, if G has a w -sink for every w

of length d .

10 / 22



Deterministic de Bruijn graph images

Let Σ a finite alphabet and G a Σ-labeled graph.

Definition

A graph G is an image if there exist d ≥ 1 and a surjective

homomorphism Bd(Σ) ↠ G .

Observation: It suffices to characterize images.

Definition

▶ A node u of G is a w -sink, for w ∈ Σ∗, if, for every node x of

G , we have a path x
w→ u.

▶ G is d-synchronizing, for d ≥ 1, if G has a w -sink for every w

of length d .

10 / 22



Deterministic de Bruijn graph images

Let Σ a finite alphabet and G a Σ-labeled graph.

Definition

A graph G is an image if there exist d ≥ 1 and a surjective

homomorphism Bd(Σ) ↠ G .

Observation: It suffices to characterize images.

Definition

▶ A node u of G is a w -sink, for w ∈ Σ∗, if, for every node x of

G , we have a path x
w→ u.

▶ G is d-synchronizing, for d ≥ 1, if G has a w -sink for every w

of length d .

10 / 22



Deterministic de Bruijn graph images

Let Σ a finite alphabet and G a Σ-labeled graph.

Definition

A graph G is an image if there exist d ≥ 1 and a surjective

homomorphism Bd(Σ) ↠ G .

Observation: It suffices to characterize images.

Definition

▶ A node u of G is a w -sink, for w ∈ Σ∗, if, for every node x of

G , we have a path x
w→ u.

▶ G is d-synchronizing, for d ≥ 1, if G has a w -sink for every w

of length d .

10 / 22



Deciding deterministic images

Proposition (Bleak, Cameron, Maissel, Navas, Olukoya 2016)

Let G be a deterministic graph. Then:

G is an image of Bd

if, and only if,

G is strongly connected and G is d-synchronizing.

This characterization yields a linear time decision procedure for

deterministic input graphs:

1. Set G0 := G .

2. Set Gn+1 := Gn/≡n, where u ≡n u′ iff u · a = u′ · a for all a.

3. When Gn+1 = Gn, output ‘yes’ iff Gn has a single node.

11 / 22



Deciding deterministic images

Proposition (Bleak, Cameron, Maissel, Navas, Olukoya 2016)

Let G be a deterministic graph. Then:

G is an image of Bd

if, and only if,

G is strongly connected and G is d-synchronizing.

This characterization yields a linear time decision procedure for

deterministic input graphs:

1. Set G0 := G .

2. Set Gn+1 := Gn/≡n, where u ≡n u′ iff u · a = u′ · a for all a.

3. When Gn+1 = Gn, output ‘yes’ iff Gn has a single node.

11 / 22



A non-deterministic example: ‘The hamburger’

x z y0 1

0, 1 0, 1

0, 1 0, 1

1

0

This graph is strongly connected and 2-synchronizing.

However, it is not an image of B2.

In fact, it is not an image of Bd for any d .

12 / 22



Power-connectedness: intuition

The de Bruijn graphs possess a very strong connectedness

property, which transfers to images: Bd is power-connected.

Intuitively: ‘You can find out where you are within d steps’.

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

Letters read: 011

13 / 22



Power-connectedness: intuition

The de Bruijn graphs possess a very strong connectedness

property, which transfers to images: Bd is power-connected.

Intuitively: ‘You can find out where you are within d steps’.

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

Letters read: 011

13 / 22



Power-connectedness: intuition

The de Bruijn graphs possess a very strong connectedness

property, which transfers to images: Bd is power-connected.

Intuitively: ‘You can find out where you are within d steps’.

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

Letters read: 011

13 / 22



Power-connectedness: intuition

The de Bruijn graphs possess a very strong connectedness

property, which transfers to images: Bd is power-connected.

Intuitively: ‘You can find out where you are within d steps’.

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

Letters read: 11

13 / 22



Power-connectedness: intuition

The de Bruijn graphs possess a very strong connectedness

property, which transfers to images: Bd is power-connected.

Intuitively: ‘You can find out where you are within d steps’.

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

Letters read: 1

13 / 22



Power-connectedness: intuition

The de Bruijn graphs possess a very strong connectedness

property, which transfers to images: Bd is power-connected.

Intuitively: ‘You can find out where you are within d steps’.

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

Letters read:

13 / 22



Power-connectedness defined

Let H = (VH ,EH) be a Σ-graph.

▶ A node u ∈ VH is a predecessor of a set S ⊆ VH if, for every

a ∈ Σ, there exists s ∈ S such that u
a→ s.

▶ A set C ⊆ VH is closed if it contains all its predecessors.

Let G = (VG ,EG ) be a Σ-graph.

▶ The power graph of G is the graph with nodes P(VG ) and

S
a→ T ⇐⇒ ∀x ∈ S ,∃y ∈ T such that x

a→G y .

▶ G is power-connected if, in its power graph, the node VG is in

the closure of the set of nodes {{u} : u ∈ VG} .

14 / 22



Power-connectedness defined

Let H = (VH ,EH) be a Σ-graph.

▶ A node u ∈ VH is a predecessor of a set S ⊆ VH if, for every

a ∈ Σ, there exists s ∈ S such that u
a→ s.

▶ A set C ⊆ VH is closed if it contains all its predecessors.

Let G = (VG ,EG ) be a Σ-graph.

▶ The power graph of G is the graph with nodes P(VG ) and

S
a→ T ⇐⇒ ∀x ∈ S ,∃y ∈ T such that x

a→G y .

▶ G is power-connected if, in its power graph, the node VG is in

the closure of the set of nodes {{u} : u ∈ VG} .

14 / 22



Power-connectedness defined

Let H = (VH ,EH) be a Σ-graph.

▶ A node u ∈ VH is a predecessor of a set S ⊆ VH if, for every

a ∈ Σ, there exists s ∈ S such that u
a→ s.

▶ A set C ⊆ VH is closed if it contains all its predecessors.

Let G = (VG ,EG ) be a Σ-graph.

▶ The power graph of G is the graph with nodes P(VG ) and

S
a→ T ⇐⇒ ∀x ∈ S ,∃y ∈ T such that x

a→G y .

▶ G is power-connected if, in its power graph, the node VG is in

the closure of the set of nodes {{u} : u ∈ VG} .

14 / 22



Power-connectedness defined

Let H = (VH ,EH) be a Σ-graph.

▶ A node u ∈ VH is a predecessor of a set S ⊆ VH if, for every

a ∈ Σ, there exists s ∈ S such that u
a→ s.

▶ A set C ⊆ VH is closed if it contains all its predecessors.

Let G = (VG ,EG ) be a Σ-graph.

▶ The power graph of G is the graph with nodes P(VG ) and

S
a→ T ⇐⇒ ∀x ∈ S ,∃y ∈ T such that x

a→G y .

▶ G is power-connected if, in its power graph, the node VG is in

the closure of the set of nodes {{u} : u ∈ VG} .

14 / 22



Power-connectedness: necessity

Proposition

Any image of Bd is power-connected.

Proposition

There is an exponential-time algorithm that determines whether or

not a graph is power-connectd.

The hamburger fails to be power-connected, and thus cannot be

an image.

15 / 22



Power-connectedness: necessity

Proposition

Any image of Bd is power-connected.

Proposition

There is an exponential-time algorithm that determines whether or

not a graph is power-connectd.

The hamburger fails to be power-connected, and thus cannot be

an image.

15 / 22



Power-connectedness: necessity

Proposition

Any image of Bd is power-connected.

Proposition

There is an exponential-time algorithm that determines whether or

not a graph is power-connectd.

The hamburger fails to be power-connected, and thus cannot be

an image.

15 / 22



Another non-deterministic example: ‘The cone of fries’

z y

x

0

0, 10, 1
0

1

This graph is power-connected, but cannot have a homomorphism

from any Bd : There is no self-loop labeled 0.

16 / 22



Another non-deterministic example: ‘The cone of fries’

z y

x

0

0, 10, 1
0

1

This graph is power-connected, but cannot have a homomorphism

from any Bd : There is no self-loop labeled 0.

16 / 22



Cycle-connectedness: intuition

A different very strong connectedness property of de Bruijn graphs:

We have arbitrarily long cycles, reachable from anywhere.

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

A cycle labeled 1100101

17 / 22



Cycle-connectedness: intuition

A different very strong connectedness property of de Bruijn graphs:

We have arbitrarily long cycles, reachable from anywhere.

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

A cycle labeled 1100101

17 / 22



Cycle-connectedness: intuition

A different very strong connectedness property of de Bruijn graphs:

We have arbitrarily long cycles, reachable from anywhere.

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

A cycle labeled 1100101

17 / 22



Cycle-connectedness: intuition

A different very strong connectedness property of de Bruijn graphs:

We have arbitrarily long cycles, reachable from anywhere.

000 111010 101

001 011

110100

0 1

1

0

1 1

00

1

0

1

0

01

0

0 1

1

A cycle labeled 1100101

17 / 22



Cycle-connectedness defined

Let G = (VG ,EG ) be a Σ-graph.

▶ A w -cycle, for w ∈ Σ+, is a path u
w→ u, for some u ∈ VG .

▶ A reachable w -cycle is a w -cycle u
w→ u such that, for some

k ≥ 1, there exists, for every node v , a path v
wk

→ u.

▶ G is cycle-connected if, for every w ∈ Σ+, there exists a

reachable w -cycle.

Proposition

Any image of Bd is cycle-connected.

Proposition

There is an exponential-time algorithm that determines whether or

not a graph is cycle-connected.

18 / 22



Cycle-connectedness defined

Let G = (VG ,EG ) be a Σ-graph.

▶ A w -cycle, for w ∈ Σ+, is a path u
w→ u, for some u ∈ VG .

▶ A reachable w -cycle is a w -cycle u
w→ u such that, for some

k ≥ 1, there exists, for every node v , a path v
wk

→ u.

▶ G is cycle-connected if, for every w ∈ Σ+, there exists a

reachable w -cycle.

Proposition

Any image of Bd is cycle-connected.

Proposition

There is an exponential-time algorithm that determines whether or

not a graph is cycle-connected.

18 / 22



Cycle-connectedness defined

Let G = (VG ,EG ) be a Σ-graph.

▶ A w -cycle, for w ∈ Σ+, is a path u
w→ u, for some u ∈ VG .

▶ A reachable w -cycle is a w -cycle u
w→ u such that, for some

k ≥ 1, there exists, for every node v , a path v
wk

→ u.

▶ G is cycle-connected if, for every w ∈ Σ+, there exists a

reachable w -cycle.

Proposition

Any image of Bd is cycle-connected.

Proposition

There is an exponential-time algorithm that determines whether or

not a graph is cycle-connected.

18 / 22



Cycle-connectedness defined

Let G = (VG ,EG ) be a Σ-graph.

▶ A w -cycle, for w ∈ Σ+, is a path u
w→ u, for some u ∈ VG .

▶ A reachable w -cycle is a w -cycle u
w→ u such that, for some

k ≥ 1, there exists, for every node v , a path v
wk

→ u.

▶ G is cycle-connected if, for every w ∈ Σ+, there exists a

reachable w -cycle.

Proposition

Any image of Bd is cycle-connected.

Proposition

There is an exponential-time algorithm that determines whether or

not a graph is cycle-connected.

18 / 22



Characterization theorem

Theorem

A Σ-graph G is an image of a de Bruijn graph if, and only if, G

has a subgraph that is cycle-connected and power-connected.

The two conditions are independent from each other:

▶ the hamburger is cycle-connected and not power-connected,

▶ the cone of fries is power-connected and not cycle-connected.

The two conditions can be checked in exponential time.

19 / 22



Characterization theorem

Theorem

A Σ-graph G is an image of a de Bruijn graph if, and only if, G

has a subgraph that is cycle-connected and power-connected.

The two conditions are independent from each other:

▶ the hamburger is cycle-connected and not power-connected,

▶ the cone of fries is power-connected and not cycle-connected.

The two conditions can be checked in exponential time.

19 / 22



Proof overview

▶ Given a cycle- and power-connected graph G , we need to

define a homomorphism h : Bd → G , for some d .

▶ Any node of the form ad must go to a node with a-loop.

▶ If w ∈ Σd has a long part with small period, then w must go

‘close’ to a cycle.

▶ Problem: How to synchronize different cycles?

▶ For example,

0 01 01 01 01 01 and 10 10 10 10 10 1

should go to two nodes that have a common 0-successor.

▶ Idea: Use minimizers: If w is not highly periodic, single out a

position for starting a new synchronization process.

(Schleimer et al. 2003, Roberts et al. 2004)

20 / 22



Proof overview

▶ Given a cycle- and power-connected graph G , we need to

define a homomorphism h : Bd → G , for some d .

▶ Any node of the form ad must go to a node with a-loop.

▶ If w ∈ Σd has a long part with small period, then w must go

‘close’ to a cycle.

▶ Problem: How to synchronize different cycles?

▶ For example,

0 01 01 01 01 01 and 10 10 10 10 10 1

should go to two nodes that have a common 0-successor.

▶ Idea: Use minimizers: If w is not highly periodic, single out a

position for starting a new synchronization process.

(Schleimer et al. 2003, Roberts et al. 2004)

20 / 22



Proof overview

▶ Given a cycle- and power-connected graph G , we need to

define a homomorphism h : Bd → G , for some d .

▶ Any node of the form ad must go to a node with a-loop.

▶ If w ∈ Σd has a long part with small period, then w must go

‘close’ to a cycle.

▶ Problem: How to synchronize different cycles?

▶ For example,

0 01 01 01 01 01 and 10 10 10 10 10 1

should go to two nodes that have a common 0-successor.

▶ Idea: Use minimizers: If w is not highly periodic, single out a

position for starting a new synchronization process.

(Schleimer et al. 2003, Roberts et al. 2004)

20 / 22



Proof overview

▶ Given a cycle- and power-connected graph G , we need to

define a homomorphism h : Bd → G , for some d .

▶ Any node of the form ad must go to a node with a-loop.

▶ If w ∈ Σd has a long part with small period, then w must go

‘close’ to a cycle.

▶ Problem: How to synchronize different cycles?

▶ For example,

0 01 01 01 01 01 and 10 10 10 10 10 1

should go to two nodes that have a common 0-successor.

▶ Idea: Use minimizers: If w is not highly periodic, single out a

position for starting a new synchronization process.

(Schleimer et al. 2003, Roberts et al. 2004)

20 / 22



Proof overview

▶ Given a cycle- and power-connected graph G , we need to

define a homomorphism h : Bd → G , for some d .

▶ Any node of the form ad must go to a node with a-loop.

▶ If w ∈ Σd has a long part with small period, then w must go

‘close’ to a cycle.

▶ Problem: How to synchronize different cycles?

▶ For example,

0 01 01 01 01 01 and 10 10 10 10 10 1

should go to two nodes that have a common 0-successor.

▶ Idea: Use minimizers: If w is not highly periodic, single out a

position for starting a new synchronization process.

(Schleimer et al. 2003, Roberts et al. 2004)

20 / 22



Proof overview

▶ Given a cycle- and power-connected graph G , we need to

define a homomorphism h : Bd → G , for some d .

▶ Any node of the form ad must go to a node with a-loop.

▶ If w ∈ Σd has a long part with small period, then w must go

‘close’ to a cycle.

▶ Problem: How to synchronize different cycles?

▶ For example,

0 01 01 01 01 01 and 10 10 10 10 10 1

should go to two nodes that have a common 0-successor.

▶ Idea: Use minimizers: If w is not highly periodic, single out a

position for starting a new synchronization process.

(Schleimer et al. 2003, Roberts et al. 2004)

20 / 22



Proof ingredients

▶ Dichotomy Lemma. For any sufficiently long word w :

1. either w contains a long periodic suffix,

2. or w has a minimizer for long enough to synchronize.

▶ The proof uses the critical factorization theorem from

combinatorics on words (Lothaire).

▶ From there, a (so far) somewhat ad hoc construction of the

homomorphism.

21 / 22



Proof ingredients

▶ Dichotomy Lemma. For any sufficiently long word w :

1. either w contains a long periodic suffix,

2. or w has a minimizer for long enough to synchronize.

▶ The proof uses the critical factorization theorem from

combinatorics on words (Lothaire).

▶ From there, a (so far) somewhat ad hoc construction of the

homomorphism.

21 / 22



Proof ingredients

▶ Dichotomy Lemma. For any sufficiently long word w :

1. either w contains a long periodic suffix,

2. or w has a minimizer for long enough to synchronize.

▶ The proof uses the critical factorization theorem from

combinatorics on words (Lothaire).

▶ From there, a (so far) somewhat ad hoc construction of the

homomorphism.

21 / 22



Final remarks

▶ We establish that the mapping problem is in exp-time, and

the unifiability problem in 2-exp-time. Hardness?

▶ A connection to symbolic dynamics: Our main result implies

that it is decidable if a two-sided edge shift has a sliding block

code section (One-sided case: Salo and Törmä 2015.)

▶ The general method is not limited, in principle, to de Bruijn

graphs and temporal logic of next. One might try to use it for

unifiability for other logics, e.g., modal logic K (hypergraphs!)

▶ Thanks for your attention! (Who else is ready for lunch...?)

22 / 22



Final remarks

▶ We establish that the mapping problem is in exp-time, and

the unifiability problem in 2-exp-time. Hardness?

▶ A connection to symbolic dynamics: Our main result implies

that it is decidable if a two-sided edge shift has a sliding block

code section (One-sided case: Salo and Törmä 2015.)

▶ The general method is not limited, in principle, to de Bruijn

graphs and temporal logic of next. One might try to use it for

unifiability for other logics, e.g., modal logic K (hypergraphs!)

▶ Thanks for your attention! (Who else is ready for lunch...?)

22 / 22



Final remarks

▶ We establish that the mapping problem is in exp-time, and

the unifiability problem in 2-exp-time. Hardness?

▶ A connection to symbolic dynamics: Our main result implies

that it is decidable if a two-sided edge shift has a sliding block

code section (One-sided case: Salo and Törmä 2015.)

▶ The general method is not limited, in principle, to de Bruijn

graphs and temporal logic of next. One might try to use it for

unifiability for other logics, e.g., modal logic K (hypergraphs!)

▶ Thanks for your attention! (Who else is ready for lunch...?)

22 / 22



Final remarks

▶ We establish that the mapping problem is in exp-time, and

the unifiability problem in 2-exp-time. Hardness?

▶ A connection to symbolic dynamics: Our main result implies

that it is decidable if a two-sided edge shift has a sliding block

code section (One-sided case: Salo and Törmä 2015.)

▶ The general method is not limited, in principle, to de Bruijn

graphs and temporal logic of next. One might try to use it for

unifiability for other logics, e.g., modal logic K (hypergraphs!)

▶ Thanks for your attention! (Who else is ready for lunch...?)

22 / 22


