
Pointlike sets for varieties determined by groups

Sam van Gool

DIAMANT Symposium

Veenendaal, November 2018

Supported by EU Marie Curie grant no. 655941

1 / 21



Regular languages and profinite semigroups

Separation problems and pointlike sets

New result

Proof techniques

2 / 21



Regular languages and profinite semigroups

Separation problems and pointlike sets

New result

Proof techniques

2 / 21



Regular languages: example

I A programming problem: given a natural number in binary,

w ∈ {0, 1}+, determine whether or not w is divisible by 3.

I Solution 1: a (deterministic) automaton A:

q0 q1 q2

1

0

1

0

0

1

Answer yes iff A accepts w .

I Solution 2: a regular expression

R := 0∗(1(01∗0)∗1)∗0∗

Answer yes iff w matches the expression R .

3 / 21



Regular languages: example

I A programming problem: given a natural number in binary,

w ∈ {0, 1}+, determine whether or not w is divisible by 3.

I Solution 1: a (deterministic) automaton A:

q0 q1 q2

1

0

1

0

0

1

Answer yes iff A accepts w .

I Solution 2: a regular expression

R := 0∗(1(01∗0)∗1)∗0∗

Answer yes iff w matches the expression R .

3 / 21



Regular languages: example

I A programming problem: given a natural number in binary,

w ∈ {0, 1}+, determine whether or not w is divisible by 3.

I Solution 1: a (deterministic) automaton A:

q0 q1 q2

1

0

1

0

0

1

Answer yes iff A accepts w .

I Solution 2: a regular expression

R := 0∗(1(01∗0)∗1)∗0∗

Answer yes iff w matches the expression R .
3 / 21



Regular languages: example

I A programming problem: given a natural number in binary,

w ∈ {0, 1}+, determine whether or not w is divisible by 3.

I Solution 1: a (deterministic) automaton A:

q0 q1 q2

1

0

1

0

0

1

Answer yes iff A accepts w .

I Solution 3: a homomorphism φ : {0, 1}+ → S3

0 7→ (1 2), 1 7→ (0 1).

Answer yes iff the permutation φ(w) fixes 0.

3 / 21



Regular languages

Let Σ be a finite alphabet.

Theorem (Kleene, 1950s)

For any language L ⊆ Σ+, the following are equivalent:

1. the language L is accepted by a (deterministic) finite automaton;

2. the language L is described by a regular expression, built from Σ,

()∗, ·, ∪ (and complementation);

3. the language L is recognized by a homomorphism to a finite

semigroup;

4. the language L is definable in monadic second order logic.

Moreover, there is a computable ‘minimal’ such semigroup, called

the syntactic semigroup of L.

4 / 21



Regular languages

Let Σ be a finite alphabet.

Theorem (Kleene, 1950s)

For any language L ⊆ Σ+, the following are equivalent:

1. the language L is accepted by a (deterministic) finite automaton;

2. the language L is described by a regular expression, built from Σ,

()∗, ·, ∪ (and complementation);

3. the language L is recognized by a homomorphism to a finite

semigroup;

4. the language L is definable in monadic second order logic.

Moreover, there is a computable ‘minimal’ such semigroup, called

the syntactic semigroup of L.

4 / 21



Regular languages

Let Σ be a finite alphabet.

Theorem (Kleene, 1950s)

For any language L ⊆ Σ+, the following are equivalent:

1. the language L is accepted by a (deterministic) finite automaton;

2. the language L is described by a regular expression, built from Σ,

()∗, ·, ∪ (and complementation);

3. the language L is recognized by a homomorphism to a finite

semigroup;

4. the language L is definable in monadic second order logic.

Moreover, there is a computable ‘minimal’ such semigroup, called

the syntactic semigroup of L.

4 / 21



Regular languages

Let Σ be a finite alphabet.

Theorem (Kleene, 1950s)

For any language L ⊆ Σ+, the following are equivalent:

1. the language L is accepted by a (deterministic) finite automaton;

2. the language L is described by a regular expression, built from Σ,

()∗, ·, ∪ (and complementation);

3. the language L is recognized by a homomorphism to a finite

semigroup;

4. the language L is definable in monadic second order logic.

Moreover, there is a computable ‘minimal’ such semigroup, called

the syntactic semigroup of L.

4 / 21



Regular languages

Let Σ be a finite alphabet.

Theorem (Kleene, 1950s)

For any language L ⊆ Σ+, the following are equivalent:

1. the language L is accepted by a (deterministic) finite automaton;

2. the language L is described by a regular expression, built from Σ,

()∗, ·, ∪ (and complementation);

3. the language L is recognized by a homomorphism to a finite

semigroup;

4. the language L is definable in monadic second order logic.

Moreover, there is a computable ‘minimal’ such semigroup, called

the syntactic semigroup of L.

4 / 21



Regular languages

Let Σ be a finite alphabet.

Theorem (Kleene, 1950s)

For any language L ⊆ Σ+, the following are equivalent:

1. the language L is accepted by a (deterministic) finite automaton;

2. the language L is described by a regular expression, built from Σ,

()∗, ·, ∪ (and complementation);

3. the language L is recognized by a homomorphism to a finite

semigroup;

4. the language L is definable in monadic second order logic.

Moreover, there is a computable ‘minimal’ such semigroup, called

the syntactic semigroup of L.

4 / 21



Star-free languages

I A meta-problem: given a regular expression R , determine

whether or not there is a star-free regular expression R ′ which

describes the same language: L(R) = L(R ′).

Theorem (Schützenberger, 1960s)

The following are equivalent, for any language L:

1. the language L is accepted by a counter-free finite automaton;

2. the language L is described by a star-free expression;

3. the language L is recognized by a homomorphism to a finite

semigroup any subgroup of which is trivial;

4. the language L is definable in first order logic.

I Schützenberger’s Theorem solves the membership problem for

the class of star-free languages.
I A semigroup as in (3) is called aperiodic.

5 / 21



Star-free languages

I A meta-problem: given a regular expression R , determine

whether or not there is a star-free regular expression R ′ which

describes the same language: L(R) = L(R ′).

Theorem (Schützenberger, 1960s)

The following are equivalent, for any language L:

1. the language L is accepted by a counter-free finite automaton;

2. the language L is described by a star-free expression;

3. the language L is recognized by a homomorphism to a finite

semigroup any subgroup of which is trivial;

4. the language L is definable in first order logic.

I Schützenberger’s Theorem solves the membership problem for

the class of star-free languages.
I A semigroup as in (3) is called aperiodic.

5 / 21



Star-free languages

I A meta-problem: given a regular expression R , determine

whether or not there is a star-free regular expression R ′ which

describes the same language: L(R) = L(R ′).

Theorem (Schützenberger, 1960s)

The following are equivalent, for any language L:

1. the language L is accepted by a counter-free finite automaton;

2. the language L is described by a star-free expression;

3. the language L is recognized by a homomorphism to a finite

semigroup any subgroup of which is trivial;

4. the language L is definable in first order logic.

I Schützenberger’s Theorem solves the membership problem for

the class of star-free languages.
I A semigroup as in (3) is called aperiodic.

5 / 21



Star-free languages

I A meta-problem: given a regular expression R , determine

whether or not there is a star-free regular expression R ′ which

describes the same language: L(R) = L(R ′).

Theorem (Schützenberger, 1960s)

The following are equivalent, for any language L:

1. the language L is accepted by a counter-free finite automaton;

2. the language L is described by a star-free expression;

3. the language L is recognized by a homomorphism to a finite

semigroup any subgroup of which is trivial;

4. the language L is definable in first order logic.

I Schützenberger’s Theorem solves the membership problem for

the class of star-free languages.
I A semigroup as in (3) is called aperiodic.

5 / 21



Star-free languages

I A meta-problem: given a regular expression R , determine

whether or not there is a star-free regular expression R ′ which

describes the same language: L(R) = L(R ′).

Theorem (Schützenberger, 1960s)

The following are equivalent, for any language L:

1. the language L is accepted by a counter-free finite automaton;

2. the language L is described by a star-free expression;

3. the language L is recognized by a homomorphism to a finite

semigroup any subgroup of which is trivial;

4. the language L is definable in first order logic.

I Schützenberger’s Theorem solves the membership problem for

the class of star-free languages.
I A semigroup as in (3) is called aperiodic.

5 / 21



Star-free languages

I A meta-problem: given a regular expression R , determine

whether or not there is a star-free regular expression R ′ which

describes the same language: L(R) = L(R ′).

Theorem (Schützenberger, 1960s)

The following are equivalent, for any language L:

1. the language L is accepted by a counter-free finite automaton;

2. the language L is described by a star-free expression;

3. the language L is recognized by a homomorphism to a finite

semigroup any subgroup of which is trivial;

4. the language L is definable in first order logic.

I Schützenberger’s Theorem solves the membership problem for

the class of star-free languages.

I A semigroup as in (3) is called aperiodic.

5 / 21



Star-free languages

I A meta-problem: given a regular expression R , determine

whether or not there is a star-free regular expression R ′ which

describes the same language: L(R) = L(R ′).

Theorem (Schützenberger, 1960s)

The following are equivalent, for any language L:

1. the language L is accepted by a counter-free finite automaton;

2. the language L is described by a star-free expression;

3. the language L is recognized by a homomorphism to a finite

semigroup any subgroup of which is trivial;

4. the language L is definable in first order logic.

I Schützenberger’s Theorem solves the membership problem for

the class of star-free languages.
I A semigroup as in (3) is called aperiodic.

5 / 21



Varieties

I A class of finite semigroups V is a variety if it is closed under

finite products, homomorphic images, and subsemigroups.

I If V is a variety and Σ is a finite alphabet, V(Σ) denotes the

set of languages L ⊆ Σ+ with syntactic semigroup in V.

I The indexed collection V : Σ 7→ V(Σ) is a presheaf of Boolean

algebras.

Theorem (Gehrke, Grigorieff, Pin 2010)

The enriched Stone dual space of ultrafilters of V(Σ) coincides with

the free pro-V semigroup generated by Σ.

I The free profinite semigroup, Σ̂+, maps onto the free pro-V

semigroup with a map πV : Σ̂+ � F̂V(Σ).

6 / 21



Varieties

I A class of finite semigroups V is a variety if it is closed under

finite products, homomorphic images, and subsemigroups.

I If V is a variety and Σ is a finite alphabet, V(Σ) denotes the

set of languages L ⊆ Σ+ with syntactic semigroup in V.

I The indexed collection V : Σ 7→ V(Σ) is a presheaf of Boolean

algebras.

Theorem (Gehrke, Grigorieff, Pin 2010)

The enriched Stone dual space of ultrafilters of V(Σ) coincides with

the free pro-V semigroup generated by Σ.

I The free profinite semigroup, Σ̂+, maps onto the free pro-V

semigroup with a map πV : Σ̂+ � F̂V(Σ).

6 / 21



Varieties

I A class of finite semigroups V is a variety if it is closed under

finite products, homomorphic images, and subsemigroups.

I If V is a variety and Σ is a finite alphabet, V(Σ) denotes the

set of languages L ⊆ Σ+ with syntactic semigroup in V.

I The indexed collection V : Σ 7→ V(Σ) is a presheaf of Boolean

algebras.

Theorem (Gehrke, Grigorieff, Pin 2010)

The enriched Stone dual space of ultrafilters of V(Σ) coincides with

the free pro-V semigroup generated by Σ.

I The free profinite semigroup, Σ̂+, maps onto the free pro-V

semigroup with a map πV : Σ̂+ � F̂V(Σ).

6 / 21



Regular languages and profinite semigroups

Separation problems and pointlike sets

New result

Proof techniques

6 / 21



Generalizing the membership problem

I An interpolation problem: given regular expressions R1, R2,

determine whether there exists a star-free expression R such

that L(R1) ⊆ L(R) ⊆ L(R2).

I Equivalently, a separation problem: determine whether there

exists a star-free expression R such that L(R1) ⊆ L(R) and

L(R2) ∩ L(R) = ∅.

Theorem
The separation problem for star-free languages is decidable.

I The proof (Henckell 1988) translates the problem to a

combinatorial question about a finite semigroup, namely, to

compute its aperiodic-pointlike sets.

7 / 21



Generalizing the membership problem

I An interpolation problem: given regular expressions R1, R2,

determine whether there exists a star-free expression R such

that L(R1) ⊆ L(R) ⊆ L(R2).

I Equivalently, a separation problem: determine whether there

exists a star-free expression R such that L(R1) ⊆ L(R) and

L(R2) ∩ L(R) = ∅.

Theorem
The separation problem for star-free languages is decidable.

I The proof (Henckell 1988) translates the problem to a

combinatorial question about a finite semigroup, namely, to

compute its aperiodic-pointlike sets.

7 / 21



Generalizing the membership problem

I An interpolation problem: given regular expressions R1, R2,

determine whether there exists a star-free expression R such

that L(R1) ⊆ L(R) ⊆ L(R2).

I Equivalently, a separation problem: determine whether there

exists a star-free expression R such that L(R1) ⊆ L(R) and

L(R2) ∩ L(R) = ∅.

Theorem
The separation problem for star-free languages is decidable.

I The proof (Henckell 1988) translates the problem to a

combinatorial question about a finite semigroup, namely, to

compute its aperiodic-pointlike sets.

7 / 21



Generalizing the membership problem

I An interpolation problem: given regular expressions R1, R2,

determine whether there exists a star-free expression R such

that L(R1) ⊆ L(R) ⊆ L(R2).

I Equivalently, a separation problem: determine whether there

exists a star-free expression R such that L(R1) ⊆ L(R) and

L(R2) ∩ L(R) = ∅.

Theorem
The separation problem for star-free languages is decidable.

I The proof (Henckell 1988) translates the problem to a

combinatorial question about a finite semigroup, namely, to

compute its aperiodic-pointlike sets.

7 / 21



Pointlike sets

Proposition

Let V be a variety of finite semigroups, and let S be a finite

semigroup. For any subset X of S , the following are equivalent:

1. there exist profinite words x1, . . . , xn ∈ Ŝ+ such that

X = {[x1]S , . . . , [xn]S} and πV(x1) = · · · = πV(xn);

2. for every relational morphism ρ : S → T with T ∈ V, there

exists t ∈ T such that xρt for all x ∈ X .

A relational morphism is a subsemigroup ρ ⊆ S × T with sρ 6= ∅ for all s ∈ S .

The set X is called a V-pointlike subset of S if the conditions in

the proposition are satisfied.

Example. Any subgroup G of a finite semigroup S is A-pointlike.

8 / 21



Pointlike sets

Proposition

Let V be a variety of finite semigroups, and let S be a finite

semigroup. For any subset X of S , the following are equivalent:

1. there exist profinite words x1, . . . , xn ∈ Ŝ+ such that

X = {[x1]S , . . . , [xn]S} and πV(x1) = · · · = πV(xn);

2. for every relational morphism ρ : S → T with T ∈ V, there

exists t ∈ T such that xρt for all x ∈ X .

A relational morphism is a subsemigroup ρ ⊆ S × T with sρ 6= ∅ for all s ∈ S .

The set X is called a V-pointlike subset of S if the conditions in

the proposition are satisfied.

Example. Any subgroup G of a finite semigroup S is A-pointlike.

8 / 21



Pointlike sets

Proposition

Let V be a variety of finite semigroups, and let S be a finite

semigroup. For any subset X of S , the following are equivalent:

1. there exist profinite words x1, . . . , xn ∈ Ŝ+ such that

X = {[x1]S , . . . , [xn]S} and πV(x1) = · · · = πV(xn);

2. for every relational morphism ρ : S → T with T ∈ V, there

exists t ∈ T such that xρt for all x ∈ X .

A relational morphism is a subsemigroup ρ ⊆ S × T with sρ 6= ∅ for all s ∈ S .

The set X is called a V-pointlike subset of S if the conditions in

the proposition are satisfied.

Example. Any subgroup G of a finite semigroup S is A-pointlike.

8 / 21



Pointlike sets

Proposition

Let V be a variety of finite semigroups, and let S be a finite

semigroup. For any subset X of S , the following are equivalent:

1. there exist profinite words x1, . . . , xn ∈ Ŝ+ such that

X = {[x1]S , . . . , [xn]S} and πV(x1) = · · · = πV(xn);

2. for every relational morphism ρ : S → T with T ∈ V, there

exists t ∈ T such that xρt for all x ∈ X .

A relational morphism is a subsemigroup ρ ⊆ S × T with sρ 6= ∅ for all s ∈ S .

The set X is called a V-pointlike subset of S if the conditions in

the proposition are satisfied.

Example. Any subgroup G of a finite semigroup S is A-pointlike.

8 / 21



Separation and pointlike sets

Proposition

Let V be a variety. For any regular languages L1, L2 ⊆ Σ+, the

following are equivalent:

1. L1 is not separable from L2 by a language in V(Σ);

2. there exist profinite words w1,w2 ∈ Σ̂+, with wi ∈ cl(Li ), such

that πV(w1) = πV(w2);

3. for any homomorphism φ from Σ+ to a finite semigroup which

recognizes L1 and L2, there exist si ∈ φ(Li ) such that the set

{s1, s2} is V-pointlike.

9 / 21



Separation and pointlike sets

Proposition

Let V be a variety. For any regular languages L1, L2 ⊆ Σ+, the

following are equivalent:

1. L1 is not separable from L2 by a language in V(Σ);

2. there exist profinite words w1,w2 ∈ Σ̂+, with wi ∈ cl(Li ), such

that πV(w1) = πV(w2);

3. for any homomorphism φ from Σ+ to a finite semigroup which

recognizes L1 and L2, there exist si ∈ φ(Li ) such that the set

{s1, s2} is V-pointlike.

9 / 21



Separation and pointlike sets

Proposition

Let V be a variety. For any regular languages L1, L2 ⊆ Σ+, the

following are equivalent:

1. L1 is not separable from L2 by a language in V(Σ);

2. there exist profinite words w1,w2 ∈ Σ̂+, with wi ∈ cl(Li ), such

that πV(w1) = πV(w2);

3. for any homomorphism φ from Σ+ to a finite semigroup which

recognizes L1 and L2, there exist si ∈ φ(Li ) such that the set

{s1, s2} is V-pointlike.

9 / 21



Separation and pointlike sets

Σ̂+

F̂V(Σ)

πV

S

w1

w2

cl(L1)

cl(L2)

πV(w1) = πV(w2)

φ φ(w1)

φ(w2)

9 / 21



Separation and pointlike sets

Σ̂+

F̂V(Σ)

πV

S

w1

w2

cl(L1)

cl(L2)

πV(w1) = πV(w2)

φ φ(w1)

φ(w2)

9 / 21



Separation and pointlike sets

Σ̂+

F̂V(Σ)

πV

S

w1

w2

cl(L1)

cl(L2)

πV(w1) = πV(w2)

φ φ(w1)

φ(w2)

9 / 21



Separation and pointlike sets

Σ̂+

F̂V(Σ)

πV

S

w1

w2

cl(L1)

cl(L2)

πV(w1) = πV(w2)

φ

φ(w1)

φ(w2)

9 / 21



Separation and pointlike sets

Σ̂+

F̂V(Σ)

πV

S

w1

w2

cl(L1)

cl(L2)

πV(w1) = πV(w2)

φ φ(w1)

φ(w2)

9 / 21



Separation and pointlike sets

Σ̂+

F̂V(Σ)

πV

S

w1

w2

cl(L1)

cl(L2)

πV(w1) = πV(w2)

φ φ(w1)

φ(w2)

9 / 21



Separation and pointlike sets

Proposition

Let V be a variety. For any regular languages L1, L2 ⊆ Σ+, the

following are equivalent:

1. L1 is not separable from L2 by a language in V(Σ);

2. there exist profinite words w1,w2 ∈ Σ̂+, with wi ∈ cl(Li ), such

that πV(w1) = πV(w2);

3. for any homomorphism φ from Σ+ to a finite semigroup which

recognizes L1 and L2, there exist si ∈ φ(Li ) such that the set

{s1, s2} is V-pointlike.

9 / 21



Theorem (Henckell, 1988)

The A-pointlike sets of a finite semigroup are computable, where A

is the variety of aperiodic semigroups.

I Thus, the separation problem for star-free languages is

decidable.

10 / 21



Theorem (Henckell, 1988)

The A-pointlike sets of a finite semigroup are computable, where A

is the variety of aperiodic semigroups.

I Thus, the separation problem for star-free languages is

decidable.

10 / 21



Regular languages and profinite semigroups

Separation problems and pointlike sets

New result

Proof techniques

10 / 21



Joint work with Benjamin Steinberg (CCNY).

11 / 21



Generalizing aperiodic semigroups

I Aperiodic semigroup = all subgroups trivial = iterated

semi-direct product of semilattices.

Theorem (Krohn-Rhodes Decomposition)

Any finite semigroup divides an iterated semi-direct product of

finite semilattices and finite simple groups.

I For a variety of finite groups H, define

H := {S finite semigroup : all subgroups of S are in H}.

12 / 21



Generalizing aperiodic semigroups

I Aperiodic semigroup = all subgroups trivial = iterated

semi-direct product of semilattices.

Theorem (Krohn-Rhodes Decomposition)

Any finite semigroup divides an iterated semi-direct product of

finite semilattices and finite simple groups.

I For a variety of finite groups H, define

H := {S finite semigroup : all subgroups of S are in H}.

12 / 21



Generalizing aperiodic semigroups

I Aperiodic semigroup = all subgroups trivial = iterated

semi-direct product of semilattices.

Theorem (Krohn-Rhodes Decomposition)

Any finite semigroup divides an iterated semi-direct product of

finite semilattices and finite simple groups.

I For a variety of finite groups H, define

H := {S finite semigroup : all subgroups of S are in H}.

12 / 21



Theorem (G. & Steinberg 2018)

For any variety of finite groups H with decidable membership,

the H-pointlike sets are computable, and thus, in particular,

the separation problem for H-languages is decidable.

13 / 21



Corollaries

I H = 1, the variety containing only the trivial group.
⇒ Aperiodic-pointlikes computable (Henckell 1988)

I H = Gπ, the variety of groups whose order is divisible only by

primes in a computable set π.
⇒ Gπ-pointlikes computable (Henckell, Rhodes, Steinberg 2010)

I H = Gsol, the variety of solvable groups. Semigroups in Gsol

are called solvable semigroups.
⇒ Gsol-pointlikes computable (G. & Steinberg 2018)

14 / 21



Corollaries

I H = 1, the variety containing only the trivial group.
⇒ Aperiodic-pointlikes computable (Henckell 1988)

I H = Gπ, the variety of groups whose order is divisible only by

primes in a computable set π.
⇒ Gπ-pointlikes computable (Henckell, Rhodes, Steinberg 2010)

I H = Gsol, the variety of solvable groups. Semigroups in Gsol

are called solvable semigroups.
⇒ Gsol-pointlikes computable (G. & Steinberg 2018)

14 / 21



Corollaries

I H = 1, the variety containing only the trivial group.
⇒ Aperiodic-pointlikes computable (Henckell 1988)

I H = Gπ, the variety of groups whose order is divisible only by

primes in a computable set π.
⇒ Gπ-pointlikes computable (Henckell, Rhodes, Steinberg 2010)

I H = Gsol, the variety of solvable groups. Semigroups in Gsol

are called solvable semigroups.
⇒ Gsol-pointlikes computable (G. & Steinberg 2018)

14 / 21



Regular languages and profinite semigroups

Separation problems and pointlike sets

New result

Proof techniques

14 / 21



Computing pointlikes

Proposition

Let V be a variety of finite semigroups.

The set of V-pointlikes, PLV(S), of a finite semigroup S , is:

I a subsemigroup of P(S): X · Y is V-pointlike if X and Y are,

I a down-set: if X is V-pointlike then so is any non-empty

subset of X .

Moreover, PLV is a submonad of P:

I singletons are V-pointlike,

I the union
⋃
X of any V-pointlike subset X of the semigroup

PLV(S) is V-pointlike.

15 / 21



Computing pointlikes

Proposition

Let V be a variety of finite semigroups.

The set of V-pointlikes, PLV(S), of a finite semigroup S , is:

I a subsemigroup of P(S): X · Y is V-pointlike if X and Y are,

I a down-set: if X is V-pointlike then so is any non-empty

subset of X .

Moreover, PLV is a submonad of P:

I singletons are V-pointlike,

I the union
⋃
X of any V-pointlike subset X of the semigroup

PLV(S) is V-pointlike.

15 / 21



Computing H-pointlikes

Definition
The H-kernel of a group G , KH(G ), is the smallest normal

subgroup N of G such that G/N belongs to H.

Definition
Let T be a finite semigroup. The H-saturation of T is the smallest

downward closed subsemigroup S of P(T ) containing all singletons

{t} (t ∈ T ), such that
⋃
KH(G ) ∈ S for any subgroup G of S .

Note. H-saturations are computable if H is decidable.

Theorem (Computation of H-pointlikes)

Let T be a finite semigroup. A subset X of T is H-pointlike if, and

only if, X belongs to the H-saturation of T .

Difficult direction: every pointlike set is in the saturation.

16 / 21



Computing H-pointlikes

Definition
The H-kernel of a group G , KH(G ), is the smallest normal

subgroup N of G such that G/N belongs to H.

Definition
Let T be a finite semigroup. The H-saturation of T is the smallest

downward closed subsemigroup S of P(T ) containing all singletons

{t} (t ∈ T ), such that
⋃
KH(G ) ∈ S for any subgroup G of S .

Note. H-saturations are computable if H is decidable.

Theorem (Computation of H-pointlikes)

Let T be a finite semigroup. A subset X of T is H-pointlike if, and

only if, X belongs to the H-saturation of T .

Difficult direction: every pointlike set is in the saturation.

16 / 21



Computing H-pointlikes

Definition
The H-kernel of a group G , KH(G ), is the smallest normal

subgroup N of G such that G/N belongs to H.

Definition
Let T be a finite semigroup. The H-saturation of T is the smallest

downward closed subsemigroup S of P(T ) containing all singletons

{t} (t ∈ T ), such that
⋃
KH(G ) ∈ S for any subgroup G of S .

Note. H-saturations are computable if H is decidable.

Theorem (Computation of H-pointlikes)

Let T be a finite semigroup. A subset X of T is H-pointlike if, and

only if, X belongs to the H-saturation of T .

Difficult direction: every pointlike set is in the saturation.

16 / 21



Computing H-pointlikes

Definition
The H-kernel of a group G , KH(G ), is the smallest normal

subgroup N of G such that G/N belongs to H.

Definition
Let T be a finite semigroup. The H-saturation of T is the smallest

downward closed subsemigroup S of P(T ) containing all singletons

{t} (t ∈ T ), such that
⋃
KH(G ) ∈ S for any subgroup G of S .

Note. H-saturations are computable if H is decidable.

Theorem (Computation of H-pointlikes)

Let T be a finite semigroup. A subset X of T is H-pointlike if, and

only if, X belongs to the H-saturation of T .

Difficult direction: every pointlike set is in the saturation.

16 / 21



Computing H-pointlikes

Definition
The H-kernel of a group G , KH(G ), is the smallest normal

subgroup N of G such that G/N belongs to H.

Definition
Let T be a finite semigroup. The H-saturation of T is the smallest

downward closed subsemigroup S of P(T ) containing all singletons

{t} (t ∈ T ), such that
⋃
KH(G ) ∈ S for any subgroup G of S .

Note. H-saturations are computable if H is decidable.

Theorem (Computation of H-pointlikes)

Let T be a finite semigroup. A subset X of T is H-pointlike if, and

only if, X belongs to the H-saturation of T .

Difficult direction: every pointlike set is in the saturation.
16 / 21



Completeness of the algorithm

I Write S for the H-saturation of T .

I To show that every pointlike set of T lies in S , we need to
expand the semigroup S to a semigroup SH such that:

I SH lies in H, and
I there is a relational morphism ρ : T → SH such that

ρ−1(σ) ∈ S for every σ ∈ SH.

I Ingredients for building SH and ρ:
I a blow-up operator on S ;
I an action on strict L-chains of H-elements in S ;

I Hardest part: showing that SH lies in H.

17 / 21



Completeness of the algorithm

I Write S for the H-saturation of T .

I To show that every pointlike set of T lies in S , we need to
expand the semigroup S to a semigroup SH such that:

I SH lies in H, and
I there is a relational morphism ρ : T → SH such that

ρ−1(σ) ∈ S for every σ ∈ SH.

I Ingredients for building SH and ρ:
I a blow-up operator on S ;
I an action on strict L-chains of H-elements in S ;

I Hardest part: showing that SH lies in H.

17 / 21



Completeness of the algorithm

I Write S for the H-saturation of T .

I To show that every pointlike set of T lies in S , we need to
expand the semigroup S to a semigroup SH such that:

I SH lies in H, and

I there is a relational morphism ρ : T → SH such that

ρ−1(σ) ∈ S for every σ ∈ SH.

I Ingredients for building SH and ρ:
I a blow-up operator on S ;
I an action on strict L-chains of H-elements in S ;

I Hardest part: showing that SH lies in H.

17 / 21



Completeness of the algorithm

I Write S for the H-saturation of T .

I To show that every pointlike set of T lies in S , we need to
expand the semigroup S to a semigroup SH such that:

I SH lies in H, and
I there is a relational morphism ρ : T → SH such that

ρ−1(σ) ∈ S for every σ ∈ SH.

I Ingredients for building SH and ρ:
I a blow-up operator on S ;
I an action on strict L-chains of H-elements in S ;

I Hardest part: showing that SH lies in H.

17 / 21



Completeness of the algorithm

I Write S for the H-saturation of T .

I To show that every pointlike set of T lies in S , we need to
expand the semigroup S to a semigroup SH such that:

I SH lies in H, and
I there is a relational morphism ρ : T → SH such that

ρ−1(σ) ∈ S for every σ ∈ SH.

I Ingredients for building SH and ρ:

I a blow-up operator on S ;
I an action on strict L-chains of H-elements in S ;

I Hardest part: showing that SH lies in H.

17 / 21



Completeness of the algorithm

I Write S for the H-saturation of T .

I To show that every pointlike set of T lies in S , we need to
expand the semigroup S to a semigroup SH such that:

I SH lies in H, and
I there is a relational morphism ρ : T → SH such that

ρ−1(σ) ∈ S for every σ ∈ SH.

I Ingredients for building SH and ρ:
I a blow-up operator on S ;
I an action on strict L-chains of H-elements in S ;

I Hardest part: showing that SH lies in H.

17 / 21



Completeness of the algorithm

I Write S for the H-saturation of T .

I To show that every pointlike set of T lies in S , we need to
expand the semigroup S to a semigroup SH such that:

I SH lies in H, and
I there is a relational morphism ρ : T → SH such that

ρ−1(σ) ∈ S for every σ ∈ SH.

I Ingredients for building SH and ρ:
I a blow-up operator on S ;
I an action on strict L-chains of H-elements in S ;

I Hardest part: showing that SH lies in H.

17 / 21



L-chains of H-elements

I For elements s, t of a semigroup S , we write s ≤L t when

s = αt for some α ∈ S ∪ {1}, i.e., ‘t is a suffix of s’.

I The induced equivalence relation is called L and Lu denotes

the L-equivalence class of u.

I Every element s ∈ S has a group Γs associated to it, its

Schützenberger group, which is the faithful quotient of the

right permutation action on Ls by its stabilizer.

I Call s ∈ S an H-element if Γs lies in H.

18 / 21



L-chains of H-elements

I For elements s, t of a semigroup S , we write s ≤L t when

s = αt for some α ∈ S ∪ {1}, i.e., ‘t is a suffix of s’.

I The induced equivalence relation is called L and Lu denotes

the L-equivalence class of u.

I Every element s ∈ S has a group Γs associated to it, its

Schützenberger group, which is the faithful quotient of the

right permutation action on Ls by its stabilizer.

I Call s ∈ S an H-element if Γs lies in H.

18 / 21



L-chains of H-elements

I For elements s, t of a semigroup S , we write s ≤L t when

s = αt for some α ∈ S ∪ {1}, i.e., ‘t is a suffix of s’.

I The induced equivalence relation is called L and Lu denotes

the L-equivalence class of u.

I Every element s ∈ S has a group Γs associated to it, its

Schützenberger group, which is the faithful quotient of the

right permutation action on Ls by its stabilizer.

I Call s ∈ S an H-element if Γs lies in H.

18 / 21



L-chains of H-elements

I For elements s, t of a semigroup S , we write s ≤L t when

s = αt for some α ∈ S ∪ {1}, i.e., ‘t is a suffix of s’.

I The induced equivalence relation is called L and Lu denotes

the L-equivalence class of u.

I Every element s ∈ S has a group Γs associated to it, its

Schützenberger group, which is the faithful quotient of the

right permutation action on Ls by its stabilizer.

I Call s ∈ S an H-element if Γs lies in H.

18 / 21



A blow-up operator on S

Proposition

There exists an idempotent operation b : S → S which fixes exactly

the H-elements, is ≤L-contracting and ⊆-expanding, i.e., for all
s ∈ S , b(s) ≤L s and s ⊆ b(s).

Proof.

I For every s ∈ S , there is a subgroup Gs of S with quotient Γs .

I Define b0(s) := (
⋃

KH(Gs)) · s.

I Composing b0 sufficiently often with itself yields an

idempotent operation b.

19 / 21



A blow-up operator on S

Proposition

There exists an idempotent operation b : S → S which fixes exactly

the H-elements, is ≤L-contracting and ⊆-expanding, i.e., for all
s ∈ S , b(s) ≤L s and s ⊆ b(s).

Proof.

I For every s ∈ S , there is a subgroup Gs of S with quotient Γs .

I Define b0(s) := (
⋃
KH(Gs)) · s.

I Composing b0 sufficiently often with itself yields an

idempotent operation b.

19 / 21



A blow-up operator on S

Proposition

There exists an idempotent operation b : S → S which fixes exactly

the H-elements, is ≤L-contracting and ⊆-expanding, i.e., for all
s ∈ S , b(s) ≤L s and s ⊆ b(s).

Proof.

I For every s ∈ S , there is a subgroup Gs of S with quotient Γs .

I Define b0(s) := (
⋃
KH(Gs)) · s.

I Composing b0 sufficiently often with itself yields an

idempotent operation b.

19 / 21



A blow-up operator on S

Proposition

There exists an idempotent operation b : S → S which fixes exactly

the H-elements, is ≤L-contracting and ⊆-expanding, i.e., for all
s ∈ S , b(s) ≤L s and s ⊆ b(s).

Proof.

I For every s ∈ S , there is a subgroup Gs of S with quotient Γs .

I Define b0(s) := (
⋃
KH(Gs)) · s.

I Composing b0 sufficiently often with itself yields an

idempotent operation b.

19 / 21



The semigroup SH

I The original semigroup T acts on the finite set of strict

L-chains of H-elements of S .

I For any t ∈ T and q a strict L-chain of H-elements:

1. multiply every item in the chain q by t and add {t} in front,

2. recursively apply the blow-up operator b to the chain,

3. ‘pop’ L-equivalent elements to obtain a strict chain σt(q).

I Let SH be the semigroup generated by the functions σt , t ∈ T .

Theorem
The semigroup SH is a quotient of a subsemigroup of an infinite

wreath product acting on S∗, which lies in H.

20 / 21



The semigroup SH

I The original semigroup T acts on the finite set of strict

L-chains of H-elements of S .

I For any t ∈ T and q a strict L-chain of H-elements:

1. multiply every item in the chain q by t and add {t} in front,

2. recursively apply the blow-up operator b to the chain,

3. ‘pop’ L-equivalent elements to obtain a strict chain σt(q).

I Let SH be the semigroup generated by the functions σt , t ∈ T .

Theorem
The semigroup SH is a quotient of a subsemigroup of an infinite

wreath product acting on S∗, which lies in H.

20 / 21



The semigroup SH

I The original semigroup T acts on the finite set of strict

L-chains of H-elements of S .

I For any t ∈ T and q a strict L-chain of H-elements:

1. multiply every item in the chain q by t and add {t} in front,

2. recursively apply the blow-up operator b to the chain,

3. ‘pop’ L-equivalent elements to obtain a strict chain σt(q).

I Let SH be the semigroup generated by the functions σt , t ∈ T .

Theorem
The semigroup SH is a quotient of a subsemigroup of an infinite

wreath product acting on S∗, which lies in H.

20 / 21



The semigroup SH

I The original semigroup T acts on the finite set of strict

L-chains of H-elements of S .

I For any t ∈ T and q a strict L-chain of H-elements:

1. multiply every item in the chain q by t and add {t} in front,

2. recursively apply the blow-up operator b to the chain,

3. ‘pop’ L-equivalent elements to obtain a strict chain σt(q).

I Let SH be the semigroup generated by the functions σt , t ∈ T .

Theorem
The semigroup SH is a quotient of a subsemigroup of an infinite

wreath product acting on S∗, which lies in H.

20 / 21



Final remarks

I We showed that pointlikes are computable and separation

decidable for H whenever H is a decidable variety of groups.

I Computability of H-pointlikes implies decidability of

membership for more involved varieties built from H; one may

studies these algorithms for specific choices of H.

I If the variety H is defined by profinite identities (e.g., trivial,

abelian, solvable), these can be used to obtain a faster

algorithm for computing H-pointlikes than the ‘generic’

saturation algorithm via H-kernels.

I A detailed study of the complexity and possible

implementations for concrete H are future work.

21 / 21



Final remarks

I We showed that pointlikes are computable and separation

decidable for H whenever H is a decidable variety of groups.

I Computability of H-pointlikes implies decidability of

membership for more involved varieties built from H; one may

studies these algorithms for specific choices of H.

I If the variety H is defined by profinite identities (e.g., trivial,

abelian, solvable), these can be used to obtain a faster

algorithm for computing H-pointlikes than the ‘generic’

saturation algorithm via H-kernels.

I A detailed study of the complexity and possible

implementations for concrete H are future work.

21 / 21



Final remarks

I We showed that pointlikes are computable and separation

decidable for H whenever H is a decidable variety of groups.

I Computability of H-pointlikes implies decidability of

membership for more involved varieties built from H; one may

studies these algorithms for specific choices of H.

I If the variety H is defined by profinite identities (e.g., trivial,

abelian, solvable), these can be used to obtain a faster

algorithm for computing H-pointlikes than the ‘generic’

saturation algorithm via H-kernels.

I A detailed study of the complexity and possible

implementations for concrete H are future work.

21 / 21



Final remarks

I We showed that pointlikes are computable and separation

decidable for H whenever H is a decidable variety of groups.

I Computability of H-pointlikes implies decidability of

membership for more involved varieties built from H; one may

studies these algorithms for specific choices of H.

I If the variety H is defined by profinite identities (e.g., trivial,

abelian, solvable), these can be used to obtain a faster

algorithm for computing H-pointlikes than the ‘generic’

saturation algorithm via H-kernels.

I A detailed study of the complexity and possible

implementations for concrete H are future work.

21 / 21



Pointlike sets for varieties determined by groups

Sam van Gool

DIAMANT Symposium

Veenendaal, November 2018

Supported by EU Marie Curie grant no. 655941

21 / 21



Regular expressions for solvable semigroups

Theorem
A language is recognizable by a solvable semigroup iff it can be

described by an AC-regular expression, i.e., an expression built up

from Σ∗, Boolean operations, and, for any AC-regular expressions

R,S , a ∈ Σ, prime p and 0 ≤ q < p, the expressions RaS , and

(RaS)q mod p, which describes the language:

{w ∈ Σ∗ : #{(u, v) ∈ R × S : w = uav} = q mod p}.

Example

Let Σ = {0, 1} and R = Σ∗ \ (Σ∗1Σ∗), so that L(R) = 0∗.

The AC-expression (R1R)q mod p describes the language of words

containing q mod p occurrences of 1.
22 / 21


