
Machines, Models, Monoids, and Modal logic

Sam van Gool

University of Amsterdam and City College of New York

September 2017

Tbilisi Symposium on Language, Logic and Computation

Lagodekhi, Georgia

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 1 / 33



Outline

1 Part I: Formal Languages, Automata, and Algebra

2 Part II: Duality and Varieties of Monoids

3 Part III: Profiniteness, Pointlikes, and the Future

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 2 / 33



Outline

1 Part I: Formal Languages, Automata, and Algebra

2 Part II: Duality and Varieties of Monoids

3 Part III: Profiniteness, Pointlikes, and the Future

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 3 / 33



Outline Part I

1 What is a formal language?

Alphabets and words

Formal languages

2 How to describe a formal language?

Automata

Logic

(Open) Problems

3 How to understand formal languages?

Boolean algebras with operators

Model theory

Monoids

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 4 / 33



Formal language theory

A mathematical setting for analyzing computational problems.

Or: ... formal grammars.

All definitions are elementary.

Many problems are di�cult, interesting, and often open.
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1 What is a formal language?

Alphabets and words

Formal languages
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Alphabets and words

An alphabet is a finite set of symbols, ⌃.

A finite ⌃-word is a finite sequence of elements of ⌃.
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Alphabets and words

Examples

If ⌃ = {b, l , i , s, t,B , L, I , S ,T} then three examples of (distinct!)

⌃-words are: tbilisi, Tbilisi, and TBILISI.

If ⌃ = {enter coin, push cola, push water} then three examples

of ⌃-words are: (enter coin, push cola),

(push cola, push water, push cola), and

(push cola, push cola, push cola, push cola, push cola).

The last one can be briefly denoted as: push cola5.

The empty word, ✏, is a word in any alphabet.
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Formal Languages

Notation: ⌃⇤ is the set of all ⌃-words.

A (formal) ⌃-language is a subset L of ⌃⇤.

Examples

The empty language, ;.
The language containing only the empty word, {✏}.
The set of all ⌃-words, ⌃⇤.

The set of non-empty words is a language, ⌃+ = ⌃⇤ \ {✏}.
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Formal Languages

Examples

Let ⌃ be the set of all lower-case letters, capital letters, numbers, and

the symbols !, @, #, $, *, (, ), and %. An example of a ⌃-language is

PW = {w 2 ⌃⇤ | w is at least 8 characters long and contains at least

one letter, one number, and one special symbol}.

Let ⌃ = {enter coin, push cola, push water}. An example of a

⌃-language is
BUY = {w 2 ⌃⇤ | w contains an occurrence of enter coin before

an occurrence of push cola or push water}.

Let ⌃ = {0, 1}. Three examples of {0, 1}-languages are:
FACTOR01 = {w 2 {0, 1}⇤ | w contains ‘01’ as a factor}.
EVENONES = {w 2 {0, 1}⇤ | the number of 1’s in w is even}.
N0N1 = {0n1n | n � 0}.
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2 How to describe a formal language?

Automata

Logic

(Open) Problems
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Describing formal languages

Formal grammars

Machines

Logic

In this tutorial, we will focus on the last two, and we will mostly restrict to

regular languages.
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Automata

Examples

An automaton for the language BUY.

q
0

q
1

q
2

q
3

enter coin

push cola

push water

enter coin

all

all

push cola

push water
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Automata

Examples

An automaton for the language

FACTOR01 = {w 2 {0, 1}⇤ | w contains ‘01’ as a factor}.

q
0

q
1

q
2

0

0, 1

1

0, 1
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Automata

An automaton is a tuple A = (Q,⌃, �), where
I Q is a finite set of states,
I ⌃ is a finite alphabet,
I � : Q ⇥ ⌃ ! P(Q) is a transition function.

Notation: q
a! q0 means:

q is a state in Q, a is a letter in ⌃, and q0 is a state in �(q, a).

Pick two sets of states, I and F , in Q.

A word a
1

. . . an 2 ⌃⇤ is accepted by the automaton A with initial

states I and final states F if there exists a path q
0

a
1! q

1

a
2! · · · an! qn

such that q
0

2 I and qn 2 F .

The language LA,I ,F of all accepted words is called the language

recognized by A with initial states I and final states F .

Full technical name: non-deterministic finite automaton (NFA).

Deterministic (DFA): � : Q ⇥ ⌃ ! Q.
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Regular languages

A language L is called regular if there exists an NFA that recognizes it.

Fact

There exists a non-deterministic finite automaton that recognizes L if, and

only if, there exists a deterministic finite automaton that recognizes L.
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Exercises

1 Describe an automaton that recognizes EVENONES.

2 Describe an automaton that recognizes PW.

3 Describe a deterministic automaton that recognizes FACTOR01.

4 (*) Is it possible to find an automaton that recognizes N0N1? If no,

explain why not.

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 17 / 33



Logic

Examples

The language BUY of action sequences for buying has logic description

9x9y [x < y ^ enter coin(x) ^ (push cola(y) _ push water(y))] .

The language EVENLENGTH of {0, 1}-words of even length has logic

description

empty_9P [P(first) ^ ¬P(last) ^ 8x 6= last (P(x) $ ¬P(S(x)))] .
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Logic

Syntax:
I Basic propositional connectives: ^, ¬.
I Quantification over first-order variables x , y , . . . and monadic

second-order variables P , Q, . . . .
I Atomic formulas: x < y , P ✓ Q, P(x), a(x) for a 2 ⌃.

Semantics: view a word w = a
1

. . . an as a structure W , i.e.,
I The underlying set of W is {1, . . . , n}.
I The natural linear order <W interprets the binary predicate <.
I For every letter a 2 ⌃, aW is the set of positions i where ai = a.

For a sentence ', L' = {w 2 ⌃⇤ | w |= '}.
Shortcuts such as S(x), first, last, empty, ... are definable.

This is Monadic Second Order (MSO) Logic.

First Order (FO) Logic is obtained by disallowing second order

variables and second order quantifiers.
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Exercises

1 Describe the language FACTOR01 with MSO logic, or FO logic if

possible.

2 Describe the language PW with MSO logic, or FO logic if possible.

3 Describe the language EVENONES with MSO logic, or FO logic if

possible.

4 If you think it is impossible to find an FO logic definition in (1)–(3),

explain why.

5 What is the lowest possible quantifier depth you need to describe PW

and EVENONES? (*) Can you prove it?

6 (*) Is it possible to describe the language N0N1 with an MSO

formula? If no, why not?
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Logic and automata

Theorem (Büchi 1960)

Let L ✓ ⌃⇤ be a language. Then L is regular if, and only if, L is definable

in MSO logic.

Proof ingredients.

The behavior of any automaton can be ‘described’ in MSO logic.

MSO logic can be simulated by automata.

From here on, regular = MSO-definable.
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Problems

Given an automaton, decide if it accepts any words?

Given a regular language, decide if it is FO-definable?

Given an FO-definable language, decide if it is definable in FOk , i.e.,

FO logic of quantifier depth  k?

Given two regular languages, decide if they are separable by an
FO-definable language?

I A language M separates L
1

from L
2

if L
1

✓ M and L
2

\M = ;.

Given two regular languages, decide if they are separable by an

FOk -definable language?

...
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Problems

Given an automaton, decide if it accepts any words? See next slides

Given a regular language, decide if it is FO-definable? See Part II

Given an FO-definable language, decide if it is definable in FOk , i.e.,

FO logic of quantifier depth  k? Open for k � 3

Given two regular languages, decide if they are separable by an
FO-definable language? See Part III

I A language M separates L
1

from L
2

if L
1

✓ M and L
2

\M = ;.

Given two regular languages, decide if they are separable by an

FOk -definable language? Open for k � 3

...
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3 How to understand formal languages?

Boolean algebras with operators

Model theory

Monoids
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Boolean algebras with operators

The set of all ⌃-languages, P(⌃⇤), is a Boolean algebra with

operations [ (union) and ()c (complement).

For any letter a 2 ⌃, the function

L 7! a�1L = {w 2 ⌃⇤ | aw 2 L}

is an endomorphism of the Boolean algebra, and so is

L 7! La�1 = {w 2 ⌃⇤ | wa 2 L}.

Fact

If L
1

, L
2

are regular, then L
1

[ L
2

is regular.

If L is regular, then Lc is regular.

If L is regular, then a�1L and La�1 are regular.
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Quotient operators shift initial and final states

Proof of last item.

Suppose that A is an NFA that recognizes L with initial states I and

final states F .

Then a�1L is recognized by A with final states F and initial states Ia,

i.e., the set of states q which admit a transition q
0

a! q for some

q
0

2 I .

Also, La�1 is recognized by A with initial states I and final states

a�1F , i.e., the set of states q which admit a transition q
a! qF for

some qF 2 F .

Corollary

If L is regular, then the set {w�1L, Lw�1 | w 2 ⌃⇤} is finite.
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Boolean algebras with operators

A Boolean subalgebra B  P(⌃⇤) is closed if, for every L in B and a

in ⌃, both a�1L and La�1 are in B .

The set of regular ⌃ -languages, Reg(⌃⇤), is a closed subalgebra of

P(⌃⇤).

For any automaton A = (Q,⌃, �), the set of ⌃-languages which A
can recognize is a finite closed subalgebra of Reg(⌃⇤).

Any ⌃-language L generates a closed subalgebra, B(L), i.e., the

smallest closed subalgebra containing L.

Proposition

A language L 2 P(⌃⇤) is regular if, and only if, B(L) is finite.

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 27 / 33



Exercises

1 Describe the closed subalgebra generated by the {0, 1}-language
EVENLENGTH.

2 Let S ✓ N. Describe the closed subalgebra generated by the

{1}-language LENGTHS of {1}-words of length S .

3 (*) When is the algebra in (2) finite?
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Model theory

Let T
⌃

be the MSO theory of finite ⌃-words, i.e., the set of MSO

sentences that are true in all finite ⌃-words.

Let L(T
⌃

) be the Lindenbaum algebra of T , i.e., the algebra of

MSO-sentences up to T
⌃

-equivalence. This is a Boolean algebra.

To any [']T
⌃

in L(T
⌃

), associate the regular language, L('),

described by '.

This assignment is a well-defined isomorphism between L(T
⌃

) and

Reg(⌃⇤).

Exercise: (*) Describe the operators L 7! a�1L and L 7! La�1 directly

on the Lindenbaum algebra L(T
⌃

).

Under this isomorphism, the subalgebra of FO-sentences corresponds

to a subalgebra of Reg(⌃⇤). Which? See Part II
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Semigroups and monoids

A semigroup is a pair (S , ·), where · is an associative operation, i.e.,

x · (y · z) = (x · y) · z for all x , y , z in S .

A monoid is a semigroup that contains an identity element, 1, i.e.,

1 · x = x · 1 for all x in S .

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 30 / 33



Monoids

Examples

The set ⌃⇤, with multiplication u · v := uv .

For any set P , the set of functions from P to itself, (P ! P), with

multiplication f · g := f � g .
In particular, an NFA A = (Q,⌃, �) gives, for every a 2 ⌃, a function

⌃a in (P(Q) ! P(Q)), defined by

⌃a(R) := {q | q a! q0 for some q0 2 R}.
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Exercises

1 Show that ⌃⇤ is a monoid.

2 Show that (P ! P) is a monoid.

3 Show that ⌃⇤ is the free monoid on ⌃, i.e., that for any monoid M

and any function f : ⌃ ! M, there is a unique homomorphism

f̄ : ⌃⇤ ! M extending f .

4 Applying (3) to the function ⌃ : ⌃ ! (P(Q) ! P(Q)), give an

explicit description of the function ⌃̄ : ⌃⇤ ! (P(Q) ! P(Q)).

5 (*) Show that A with initial states I and final states F accepts a

word w 2 ⌃⇤ if, and only if, I \ ⌃̄w (F ) 6= ;.
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References for Part I

An accessible textbook introduction to the field:

P. Linz. An introduction to formal languages and automata. 5th ed. Jones
& Bartlett, 2012

A more advanced, but very readable introduction to logic on words:

H. Straubing. Finite automata, formal logic, and circuit complexity.
Progress in Theoretical Computer Science. Birkhäuser Boston Inc., Boston,
1994

Our recent work on applications of model theory: (see also part II)

S. J. v. Gool and B. Steinberg. “Pro-aperiodic monoids via saturated
models”. In: STACS 2017. Vol. 66. LIPIcs.
https://arxiv.org/abs/1609.07736. 2017, 39:1–39:14

A more category-theoretic view of formal language theory: (see also part II)

M. Gehrke, D. Petrisan, and L. Reggio. “Quantifiers on languages and
codensity monads”. In: TACL 2017. https://arxiv.org/abs/1702.08841.
2017
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Recap from Part I

Formal ⌃-languages are subsets of ⌃⇤, the set of finite words over a

finite alphabet ⌃.

Finite-state automata (deterministic or not) describe the regular

languages.

Monadic second order logic also describes exactly the regular

languages.

First order logic describes a (strictly) smaller class of languages.

The regular languages form a Boolean algebra with quotient

operators.

Every regular language L defines a finite closed Boolean subalgebra

B(L).

Monoids are also somehow important (but why?)
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Monoids

Examples

The set ⌃⇤, with multiplication u · v := uv .

For any set P , the set of functions from P to itself, (P ! P), with

multiplication f · g := f � g .
In particular, an NFA A = (Q,⌃, �) gives, for every a 2 ⌃, a function

⌃a in (P(Q) ! P(Q)), defined by

⌃a(R) := {q | q a! q0 for some q0 2 R}.
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Exercises

1 Show that ⌃⇤ is a monoid.

2 Show that (P ! P) is a monoid.

3 Show that ⌃⇤ is the free monoid on ⌃, i.e., that for any monoid M

and any function f : ⌃ ! M, there is a unique homomorphism

f̄ : ⌃⇤ ! M extending f .

4 Applying (3) to the function ⌃ : ⌃ ! (P(Q) ! P(Q)), give an

explicit description of the function ⌃̄ : ⌃⇤ ! (P(Q) ! P(Q)).

5 (*) Show that A with initial states I and final states F accepts a

word w 2 ⌃⇤ if, and only if, I \ ⌃̄w (F ) 6= ;.
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Regular languages and monoids

Proposition

A ⌃-language L is regular if, and only if, there exists a homomorphism

⌘ : ⌃⇤ ! M, with M a finite monoid, such that L = ⌘�1(R) for some

R ✓ M.

Proof ingredients.

The exercises on the previous slide show how to build a monoid

homomorphism from an NFA.

For the converse, notice that a homomorphism from ⌃⇤ to a monoid

‘is’ a (deterministic) automaton.
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Regular languages are:

the languages recognized by finite non-deterministic automata.

the languages recognized by finite deterministic automata.

the languages definable in monadic second order logic.

the inverse images of homomorphisms from the free monoid to a

finite monoid.

the unions of classes under finite index congruences on a free monoid.

Today, we will see how these characterizations are connected to each other

through Stone duality.
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Outline Part II

1 Finite Duality and Regular Languages

Boolean algebras

Finite Stone duality

Duality for regular languages

2 Full Duality and Varieties

First-order logic and aperiodic monoids

Full Stone duality
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Stone duality

“In January last year I gave a course at the Indian Winter School

in Logic and went on an excursion to Varanasi and Sarnath, the

birthplace of Buddhism. Upon entering the amazing Archaeologi-

cal Museum at Sarnath, our guide opened with: ‘Duality underlies

the world.’ This is the kind of sweeping statement that every

mathematician, at least secretly, would like to believe about their

particular focus...”

M. Gehrke. Duality. Oratie (inaugural lecture) at Radboud University

Nijmegen, 2009. url: http://repository.ubn.ru.nl/bitstream/

handle/2066/83300/83300.pdf

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 9 / 32

http://repository.ubn.ru.nl/bitstream/handle/2066/83300/83300.pdf
http://repository.ubn.ru.nl/bitstream/handle/2066/83300/83300.pdf


Stone duality

Stone duality was introduced by mathematician M. H. Stone in the

1930’s.

In logic, it underpins the connection between syntax and semantics.

The dual of a collection of formulas (syntax) is a space of possible

worlds/states (semantics) interpreting the formulas, and vice versa.

A key idea, and the meaning of the term ‘duality’ (= dual categorical

equivalence), is that the direction of morphisms is reversed.

More information = Less possible worlds.

More possible worlds = Less information.

Formulating duality theory precisely requires some algebra, and, for

the non-finite case, topology.

We will focus on the applications to regular languages.
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1 Finite Duality and Regular Languages

Boolean algebras

Finite Stone duality

Duality for regular languages
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Boolean algebras

An (abstract) Boolean algebra is a tuple (B ,_,¬,?), where
I B is a set,
I _ is a binary operation,
I ¬ is a unary operation,
I ? is an element of B ,
I for any classical tautology '(x̄) $  (x̄) and b̄ in B , '(b̄) =  (b̄) in B .

For example, a _ b = b _ a, ¬¬a = a, a _ ? = a, . . . .

The last condition can be replaced by a finite list of axioms.

Boolean algebras are partially ordered: a  b i↵ a _ b = b.
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Boolean algebras: examples

Examples

For any set X , (P(X ),[, ()c, ;) is a Boolean algebra.

The Lindenbaum algebra of classical propositional logic on a set of

variables V is the free Boolean algebra on V .

For any topological space X , the clopen (= closed and open) subsets

are a Boolean subalgebra of P(X ).

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 13 / 32



Finite Stone duality: algebras

Proposition

Every finite Boolean algebra B is isomorphic to a Boolean algebra of the

form P(X ), for some set X .

Proof.

Take X = At(B), the set of atoms of B .

Identify b 2 B with the set, b̂, of atoms below it.

Example

If V = {p
1

, . . . , pn}, then the Lindenbaum algebra of classical

propositional logic on V is isomorphic to P(X ), where X = {0, 1}V .
In words: a formula of CPL can be identified with the set of valuations in

which it is true.

When V is infinite, the situation is more subtle!
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Finite Stone duality: homomorphisms

Proposition

Every homomorphism between finite Boolean algebras P(Y ) ! P(X ) is of

the form f �1 for some function f : X ! Y .

In particular, any finite subalgebra of P(X ) has the form

q�1 : P(Y ) ,! P(X ), where q : X ⇣ Y is a quotient of X .

In other words, any finite subalgebra of P(X ) is the collection of

finite unions of equivalence classes of an equivalence relation on X .
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Subalgebras and equivalence relations

Example

The closed subalgebra generated by the ⌃-language L = EVENLENGTH

is

B(L) = {;, L, Lc,⌃⇤} ,! Reg(⌃⇤).

The dual of this subalgebra is a quotient q : ⌃⇤ ! At B(L).

This quotient is given by the equivalence relation w
1

⌘L w
2

if, and

only if, the length of w
1

and w
2

have the same parity.
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Finite Stone duality: regular languages

Let L be a regular ⌃-language.

Let B(L) be the finite closed subalgebra of Reg(⌃⇤) generated by L.

Then B(L) is the set of unions of equivalence classes under an

equivalence relation ⌘L on ⌃⇤, which can be defined by

w
1

⌘L w
2

() for all u, v 2 ⌃⇤, uw
1

v 2 L i↵ uw
2

v 2 L.

A language L ✓ ⌃⇤ is regular if, and only if, ⌘L has finite index.
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Duality and regular languages

B(L) is a closed subalgebra of Reg(⌃⇤).

It follows that the dual M(L) = ⌃⇤/⌘L of B(L) is a monoid.

The monoid M(L) is the syntactic monoid of L.

The homomorphism q : ⌃⇤ ! M(L) recognizes L:

L = q�1(R) where R = q(L).

Moreover, M(L) is the minimum such monoid quotient of ⌃⇤:

if q0 : ⌃⇤ ! M 0 recognizes L, then there exists f : M 0 ! M(L) such

that fq0 = q.

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 18 / 32



Syntactic monoid: Example

Example

Let ⌃ = {0, 1} and L = EVENLENGTH.

For w
1

,w
2

2 ⌃⇤, w
1

⌘L w
2

i↵ the length of w
1

and of w
2

have the same

parity.

Therefore, M(L) ⇠= Z
2

, the two-element group.

The quotient q : ⌃⇤ ! M(L) is defined by

q(w) := parity of the length of w .

Notice that q(w
1

w
2

) = q(w
1

)� q(w
2

), i.e., q is a homomorphism.
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Exercises

1 Find the syntactic monoid quotient ⌃⇤ ! M(L) when L = EVENONES.

2 Find the syntactic monoid quotient ⌃⇤ ! M(L) when L = BUY.

3 (*) Find the syntactic monoid quotient ⌃⇤ ! M(L) when L = PW.

4 Conclude from the solutions to (1) – (3) what the closed subalgebras,

B(L), generated by L are.

5 Use ⌘L to show that L is not regular when L = N0N1.
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2 Full Duality and Varieties

First-order logic and aperiodic monoids

Full Stone duality
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FO and aperiodics

In Part I, we asked: what is the subalgebra FO(⌃⇤) of Reg(⌃⇤)?

We now know that any regular language L has a finite syntactic

monoid M(L).

A monoid M is aperiodic if it contains no non-trivial subgroups.

For finite monoids, it is equivalent to say:

the equation xn = xn+1 holds in M for some n.

It is also equivalent to say: x! = x!x ,

where x! is the idempotent power of x .

Theorem (Schützenberger, 1960s)

A language L is first-order definable if, and only if, the syntactic monoid

M(L) is finite and aperiodic.

An algorithm for deciding if a regular language is FO-definable.
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Example of Schützenberger’s Theorem

Example

The syntactic monoid of EVENLENGTH is Z
2

.

This contains (in fact, is) a group.

By Schützenberger’s theorem, EVENLENGTH is not first order definable.
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Exercise

Using the results from the previous exercise, determine which of the

syntactic monoids for EVENONES, BUY, and PW are aperiodic.

Conclude which of these languages are first order definable.
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Varieties of monoids and languages

A class of finite monoids V is a (pseudo)variety if it is closed under

homomorphic images (H), submonoids (S) and finite products (Pfin).

For a variety of monoids V, define V(⌃⇤) to be the class of

⌃-languages L such that M(L) 2 V.

Then {V(⌃⇤)}
⌃

is a variety of regular languages: a collection of

Boolean subalgebras of Reg(⌃⇤) which is closed under inverse images

of homomorphisms ⌃⇤
1

! ⌃⇤
2

.

Theorem (Eilenberg)

The map V 7! V is an order-bijection between varieties of finite monoids

and varieties of regular languages.
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Equations?

Birkho↵’s theorem: varieties of (arbitrary) algebras can be defined by

(finite) equations.

What about (pseudo)varieties of finite algebras?

We need profinite equations.

To explain what these are, and why we need them: full Stone duality.
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Stone duality: general case

Proposition

Every Boolean algebra B can be embedded into a Boolean algebra of the

form P(X ), and there is a unique such embedding for which the topology

generated by the sets in the image of B is compact and Hausdor↵ (and

zero-dimensional).

‘Construction’ of the embedding.

Take X to be the set of ultrafilters of B .

Identify b 2 B with the set, b̂, of ultrafilters containing it.

A Boolean space is a compact Hausdor↵ zero-dimensional space.

Equivalently, a Boolean space is a profinite object in the category of

topological spaces.

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 27 / 32



Stone duality: example

Example

The dual space of the Lindenbaum algebra of CPL on a countable set

V = {p
1

, p
2

, p
3

, . . . } is the Cantor space {0, 1}V .
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Exercises

1 What is the dual space of the Boolean algebra of finite subsets of the

natural numbers and their complements?

2 Use what you know about classical propositional logic to prove that

the Lindenbaum algebra of CPL on a countable set

V = {p
1

, p
2

, p
3

, . . . } can be embedded into P({0, 1}V ).
3 (*) Show that the topology generated by the image of the embedding

in (2) is compact and Hausdor↵.

4 (*) Show that the topology generated by the image of the embedding

in (2) coincides with the topology of the Cantor space.
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Duality: categorical level

As in the finite case, all homomorphisms between Boolean algebras

are of the form f �1, for f a continuous function between the dual

spaces.

The categories of Boolean algebras and Boolean spaces are dually

equivalent.

Algebras dual to Spaces

subalgebras $ quotient objects

quotient algebras $ subobjects

homomorphisms $ continuous functions

algebraic operations $ co-algebraic operations

unions (directed colimits) $ projective limits
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Stone duality: summary

Finite Boolean algebras are power sets.

Boolean algebras are subalgebras of power sets.

Boolean algebra homomorphisms are inverse images.

Boolean algebras are algebras of clopen sets of a compact Hausdor↵

topological space, called the dual space.

Subalgebras of the Boolean algebra correspond to quotient spaces of

the dual space.

Quotients of the Boolean algebra correspond to closed subspaces of

the dual space.

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 31 / 32



References for Part II

Basics on duality theory for Boolean algebras: Chapter 11 in

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. 2nd.
Cambridge University Press, May 6, 2002

The duality-theoretic view on varieties:

M. Gehrke. “Stone duality, topological algebra, and recognition”. In: J.
Pure Appl. Algebra 220.7 (2016), pp. 2711–2747

A proof of Schützenberger’s Theorem: Chapter VI in

H. Straubing. Finite automata, formal logic, and circuit complexity.
Progress in Theoretical Computer Science. Birkhäuser Boston Inc., Boston,
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Recap

Any regular language L comes with a finite closed Boolean subalgebra,

B(L), of Reg(⌃⇤) and a finite monoid quotient, M(L), of ⌃⇤.

The syntactic monoid M(L) is the Stone dual (= atom set) of the

closed Boolean subalgebra B(L).

Properties of the syntactic monoid reflect properties of the language.

The syntactic monoid M(L) is aperiodic i↵ L is first-order definable.

In general, varieties (HSPfin-classes) of monoids correspond to

varieties of languages.

Full (non-finite) Stone duality can be used to explain and analyze this

correspondence but how?
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Outline Part III

1 Full Duality and Varieties

Varieties

Full Stone duality

Intuitionistic intermezzo

Profinite equations

2 Aperiodic pointlikes

Separation problem

Pointlike sets

Henckell’s Theorem

3 The Future

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 4 / 33



1 Full Duality and Varieties

Varieties

Full Stone duality

Intuitionistic intermezzo

Profinite equations
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Varieties of monoids and languages

A class of finite monoids V is a (pseudo)variety if it is closed under

homomorphic images (H), submonoids (S) and finite products (Pfin).

For a variety of monoids V, define V(⌃⇤) to be the class of

⌃-languages L such that M(L) 2 V.

Then {V(⌃⇤)}
⌃

is a variety of regular languages: a collection of

Boolean subalgebras of Reg(⌃⇤) which is closed under inverse images

of homomorphisms ⌃⇤
1

! ⌃⇤
2

.

Theorem (Eilenberg)

The map V 7! V is an order-bijection between varieties of finite monoids

and varieties of regular languages.

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 6 / 33



Equations?

Birkho↵’s theorem: varieties of (arbitrary) algebras can be defined by

(finite) equations.

What about (pseudo)varieties of finite algebras?

We need profinite equations.

To explain what these are, and why we need them: full Stone duality.
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Stone duality: general case

Proposition

Every Boolean algebra B can be embedded into a Boolean algebra of the

form P(X ), and there is a unique such embedding for which the topology

generated by the sets in the image of B is compact and Hausdor↵ (and

zero-dimensional).

‘Construction’ of the embedding.

Take X to be the set of ultrafilters of B .

Identify b 2 B with the set, b̂, of ultrafilters containing it.

A Boolean space is a compact Hausdor↵ zero-dimensional space.

Equivalently, a Boolean space is a profinite object in the category of

topological spaces.
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Stone duality: example

Example

The dual space of the Lindenbaum algebra of CPL on a countable set

V = {p
1

, p
2

, p
3

, . . . } is the Cantor space {0, 1}V .
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Exercises

1 What is the dual space of the Boolean algebra of finite subsets of the

natural numbers and their complements?

2 Use what you know about classical propositional logic to prove that

the Lindenbaum algebra of CPL on a countable set

V = {p
1

, p
2

, p
3

, . . . } can be embedded into P({0, 1}V ).
3 (*) Show that the topology generated by the image of the embedding

in (2) is compact and Hausdor↵.

4 (*) Show that the topology generated by the image of the embedding

in (2) coincides with the topology of the Cantor space.
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Duality: categorical level

As in the finite case, all homomorphisms between Boolean algebras

are of the form f �1, for f a continuous function between the dual

spaces.

The categories of Boolean algebras and Boolean spaces are dually

equivalent.

Algebras dual to Spaces

subalgebras $ quotient objects

quotient algebras $ subobjects

homomorphisms $ continuous functions

algebraic operations $ co-algebraic operations

unions (directed colimits) $ projective limits
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Stone duality: summary

Finite Boolean algebras are power sets.

Boolean algebras are subalgebras of power sets.

Boolean algebra homomorphisms are inverse images.

Boolean algebras are algebras of clopen sets of a compact Hausdor↵

topological space, called the dual space.

Subalgebras of the Boolean algebra correspond to quotient spaces of

the dual space.

Quotients of the Boolean algebra correspond to closed subspaces of

the dual space.
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Intuitionistic Intermezzo
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An open mapping theorem for Esakia spaces

Stone duality generalizes to Heyting algebras, the structures for

intuitionistic propositional logic analogous to Boolean algebras.

The Boolean space is equipped with a partial order (= the Kripke

accessibility relation in semantics for intuitionistic logic).

The spaces dual to Heyting algebras were characterized by L. Esakia

and are now called Esakia spaces.

Heyting algebra homomorphisms also require special attention: their

duals are continuous p-morphisms.

Esakia duality is useful, for example, for proving interpolation

properties of intermediate logics.

In recent joint work with L. Reggio, we prove an open mapping

theorem for Esakia spaces dual to finitely presented Heyting algebras.

Our result in particular implies Pitts’ Uniform Interpolation Thoerem

for IPC.
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Another hint of duality for interpolation?

The use of duality for analyzing quantifiers is not limited to the

context of regular languages.

A classical example is Rasiowa & Sikorski’s proof of the completeness

of classical predicate logic via Stone duality and the Baire category

theorem.

A recent example (I claim) is the counterexample to interpolation for

constant domain intuitionistic predicate logic (Mints, Olkhovikov,

Urquhart JSL 2013).

In the latter, and in Olkhovikov’s work on van-Benthem-style

characterizations (2012-2015), the use of duality is not (yet) explicit.
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End of Intuitionistic Intermezzo
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Stone duality: crucial example for language varieties

Example

The dual space of the Boolean algebra Reg(⌃⇤) of regular ⌃-languages is

the projective limit of the diagram (q : ⌃⇤ ! M) of finite quotients of ⌃⇤.

This is the space underlying the free profinite monoid, c⌃⇤, on ⌃.

Thus, the free profinite monoid over ⌃ is the ‘canonical Kripke model’ for

MSO on finite words (since the Lindenbaum algebra is Reg(⌃⇤)).
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On the free profinite monoid

“In the mid-1970s when I was at Oxford, it occurred to me that,

using regular events in the free monoid on a finite alphabet as

neighborhoods, one could make a completion to ‘infinite words’.

I even suggested to one of my students to consider this idea for

a thesis. Neither he nor I could make much progress in analyzing

this algebra or applying this idea, however, and he went on to write

a di↵erent thesis (fortunately).”

[D. Scott, via e-mail, Nov. 9, 2016]
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Describing varieties: profinite equations

Let V be a variety of finite monoids.

Let V be the corresponding variety of regular languages.

For every alphabet ⌃, V(⌃⇤) is a closed subalgebra of Reg(⌃⇤).

The dual of this closed subalgebra is a continuous monoid quotient
c⌃⇤ ! bFV(⌃), the free pro-V-monoid on ⌃.

The fact that V is closed under inverse images of homomorphisms

means that the quotients c⌃⇤ ! bFV(⌃) are substitution-invariant.

Thus, varieties can be described by profinite equations.
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Profinite equations: example

Example

The free pro-aperiodic monoid, bFA(⌃⇤), is the quotient of c⌃⇤ by the

equivalence relation defined by the substitution-invariant equation

x! = x!x .

Here, ()! : c⌃⇤ ! c⌃⇤ is the operation which sends any x to the idempotent

x! in {xn | n � 1}.
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Duality beyond the profinite

Let V be any closed subalgebra of P(⌃⇤).

It corresponds again to a topological quotient, but now of �⌃⇤, the

Stone-Cech compactification of the discrete free monoid.

The story for the monoid operation is a bit more complicated

(internal monoid action).

This idea, combined with methods from circuit complexity theory,

leads to ‘ultrafilter equations’ for characterizing classes of non-regular

languages.

M. Gehrke, A. Krebs, and J.-É. Pin. “From ultrafilters on words to

the expressive power of a fragment of logic”. In: DCFS 2014.

Vol. 8614. Lect. Notes Comput. Sci. Springer, 2014, pp. 138–149

M. Gehrke, D. Petrisan, and L. Reggio. “Quantifiers on languages

and codensity monads”. In: TACL 2017.

https://arxiv.org/abs/1702.08841. 2017
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2 Aperiodic pointlikes

Separation problem

Pointlike sets

Henckell’s Theorem
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Separation problem: language version

From here on, we work with semigroups, and ‘⌃-language’ means

subset of ⌃+.

Let V be a variety of finite semigroups with corresponding variety of

languages V.
Separation Problem: Given two disjoint regular ⌃-languages L

1

, L
2

, is

it possible to find a language, K , in V(⌃) which separates L
1

from L
2

?

Here, K separates L
1

from L
2

if L
1

✓ K and L
2

\ K = ;.
If '

1

and '
2

are MSO sentences defining L
1

and L
2

, respectively, then

disjointness means '
1

` ¬'
2

.

The logic formulation of the separation problem is: does there exist  

such that '
1

`  ` ¬'
2

, with the language K = L in V(⌃).
In general, this problem can fail to be decidable, even when

membership in V is decidable.
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Example of non-separable languages

Example (Place & Zeitoun 2016)

Let ⌃ = {0, 1}. Consider the automaton

q
0

q
1

q
3

q
2

q
4

1

0

0

1

0

0

1

The language recognized with q
1

final is L
1

= (1(00)⇤10(00)⇤)⇤1(00)⇤.
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Example of non-separable languages

Example (Place & Zeitoun 2016)

Let ⌃ = {0, 1}. Consider the automaton

q
0

q
1

q
3

q
2

q
4

1

0

0

1

0

0

1

The language recognized with q
1

final is L
1

= (1(00)⇤10(00)⇤)⇤1(00)⇤.

The language recognized with q
2

final is L
2

= (1(00)⇤10(00)⇤)+.
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Example (Place & Zeitoun 2016)

Let ⌃ = {0, 1}. Consider the automaton

q
0

q
1

q
3

q
2

q
4

1

0

0

1

0

0

1

The language recognized with q
1

final is L
1

= (1(00)⇤10(00)⇤)⇤1(00)⇤.

The language recognized with q
2

final is L
2

= (1(00)⇤10(00)⇤)+.

The languages L
1

and L
2

are disjoint, but not FO-separable.

Exercise: Use first-order logic games to prove this.

v. Gool (UvA & CCNY) Machines, Models, Monoids, Modal logic Logic Tutorial, TbiLLC 2017 24 / 33



Separation problem: semigroup version

The separation problem can be formulated as a problem about

semigroups.

We may assume L
1

and L
2

are recognized by the same semigroup

homomorphism ⌘ : ⌃+ ! S .

So L
1

= ⌘�1(R
1

) and L
2

= ⌘�1(R
2

), with R
1

and R
2

disjoint.

Is there a semigroup homomorphism ✓ : ⌃⇤ ! T 2 V, and P ✓ T ,

such that ⌘�1(R
1

) is contained in ✓�1(P), and ⌘�1(R
2

) is disjoint

from ✓�1(P)?

Fact. The answer is ‘no’ if, and only if, for every r
1

2 R
1

and r
2

2 R
2

,

the subset {r
1

, r
2

} of S is pointlike.
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Pointlike sets

A relational morphism from a semigroup S to a semigroup T is a

relation ' ✓ S ⇥ T such that s' · s 0' ✓ ss 0' and s' 6= ; for all

s, s 0 2 S .

Equivalently, it is a relation of the form �↵�1, where ↵ : U ⇣ S and

� : U ! T are homomorphisms from a semigroup U.

A subset X ✓ S is V-pointlike if, for every relational morphism

' : S ! T such that T 2 V, there exists a point x 2 T such that

X ✓ '�1(x).

If we can compute the (two-element) V-pointlike sets of S , then we

can decide the V-separation problem:

Given L
1

= ⌘�1(R
1

), L
2

= ⌘�1(R
2

) for ⌘ : ⌃⇤ ! M, check if {r
1

, r
2

}
is pointlike for all r

1

2 R
1

, r
2

2 R
2

. If so, L
1

and L
2

are non-separable.

In particular, to decide FO-separation, we will compute the

A-pointlike sets, where A is the variety of aperiodic semigroups.
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The monad of V-pointlikes

The collection of V-pointlike sets, PLV(S), of a semigroup S is a

subset of the power semigroup, 2S , of S .

Elements of 2S are subsets of S , i.e., as a set, 2S = P(S).

Multiplication on 2S is given by: X · Y = {xy | x 2 X , y 2 Y }.

Fact

The collection, PLV(S), of V-pointlike subsets of a finite semigroup S , is

a downward closed subsemigroup of 2S which contains all the singletons.

Fact

The union of a V-pointlike subset of the semigroup PLV(S) is V-pointlike.

That is,
S
: PLV(PLV(S)) ! PLV(S) is well-defined.
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Generating aperiodic-pointlike sets

For X 2 2S , define X!+⇤ =
S

n�0

X!X n.

Fact. If X is A-pointlike, then so is X!+⇤.

Singletons are A-pointlike.

Products of A-pointlike sets are A-pointlike.

Subsets of A-pointlike sets are A-pointlike.

Theorem (Henckell)

For any finite semigroup S , the set of A-pointlikes of S is the smallest

downward closed subsemigroup of 2S which contains the singletons and is

closed under the operation X 7! X!+⇤.

In particular, the A-pointlikes of any finite semigroup are computable.
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Recent progress

Henckell, Rhodes and Steinberg (2010) improved on Henckell’s

original proof and extended his methods to varieties of semigroups

that avoid specific subgroups.

Place and Zeitoun (2016) gave a logic proof of Henckell’s Thm.

Place and Zeitoun (2014-17) computed FO
2

-pointlikes.

Steinberg and I (2017) gave a semigroup proof of Henckell’s Thm.

To do so, we construct a ‘merge decomposition’ of homomorphisms.

This is an algebraic version of ‘quantifying over first and last

occurrences’.

In addition to a short elementary proof of Henckell’s Theorem, we

also give a short proof of the two-sided Krohn-Rhodes theorem.

The latter, in a slogan, says:

‘semigroup theory = semilattice theory + group theory’.
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3 The Future
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Seven questions

How far can the decidability of pointlikes be stretched?

How far do duality-theoretic methods reach beyond the regular?

How does our semigroup-theoretic work fit with the category/duality

approach?

Is there a topos-theoretic interpretation of ‘logic on words’?

What can be said about regular languages with model theory?

(Partial answers in joint work with Ghilardi)

Can the relationship with modal logic be made more tight?

Is anything I’ve said relevant for (formal) linguistics?
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XKCD 208: Regular Expressions (https://xkcd.com/208/)
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