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Outline

We study free finitely generated pro-aperiodic monoids through the

lens of model theory.

In particular, the basic observation is that they are the topological

monoids of 0-types of a first-order theory of pseudo-finite words.

We then exploit existence and uniqueness results about saturated

and prime models.
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Logic on words
I Syntax: Monadic Second Order (MSO) logic over a binary

symbol <, and a unary symbol a for every a ∈ Σ.

I Basic propositional connectives: ∧, ¬.
I Quantification over first-order variables x , y , . . . and monadic

second-order variables P, Q, . . . .
I Relational signature: x < y , a(x) for a ∈ Σ.

I Semantics: a labeled linear order ` : (W , <)→ Σ gives a
structure in this signature, namely the linear order (W , <)

equipped with unary letter predicates (aW )a∈Σ.
I The linear order <W interprets the binary predicate <.
I For every letter a ∈ Σ, aW := {p ∈W : `(p) = a}.
I Special case: finite word, when W is finite.

I Any sentence ϕ defines a language Lϕ := {w ∈ Σ∗ | w |= ϕ}.
I First Order (FO) logic: disallow second order.
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Logic on words: examples

ϕ : ∃P
[
P(first) ∧ ¬P(last) ∧ ∀x(P(x)↔ ¬P(S(x))

]
.

I aaaa |= ϕ, but aaaaa 6|= ϕ.

I W |= ϕ iff W has even length.

ψ : ∃x
[
a(x) ∧ ∀y [x < y → (¬a(y) ∧ b(y))]

]
.

I W |= ψ iff

there is a last a-position, with only b-positions after that.

θ : ∀x
[
(∃y x < y)→ (∃s x < s ∧ ∀z(x < z → ¬(z < s))

]
I W |= θ iff

any position that has a successor, has an immediate successor.

I True in every finite word, but not in, e.g., Q.

5 / 21



Logic on words: examples

ϕ : ∃P
[
P(first) ∧ ¬P(last) ∧ ∀x(P(x)↔ ¬P(S(x))

]
.

I aaaa

|= ϕ, but aaaaa 6|= ϕ.

I W |= ϕ iff W has even length.

ψ : ∃x
[
a(x) ∧ ∀y [x < y → (¬a(y) ∧ b(y))]

]
.

I W |= ψ iff

there is a last a-position, with only b-positions after that.

θ : ∀x
[
(∃y x < y)→ (∃s x < s ∧ ∀z(x < z → ¬(z < s))

]
I W |= θ iff

any position that has a successor, has an immediate successor.

I True in every finite word, but not in, e.g., Q.

5 / 21



Logic on words: examples

ϕ : ∃P
[
P(first) ∧ ¬P(last) ∧ ∀x(P(x)↔ ¬P(S(x))

]
.

I aaaa |= ϕ,

but aaaaa 6|= ϕ.

I W |= ϕ iff W has even length.

ψ : ∃x
[
a(x) ∧ ∀y [x < y → (¬a(y) ∧ b(y))]

]
.

I W |= ψ iff

there is a last a-position, with only b-positions after that.

θ : ∀x
[
(∃y x < y)→ (∃s x < s ∧ ∀z(x < z → ¬(z < s))

]
I W |= θ iff

any position that has a successor, has an immediate successor.

I True in every finite word, but not in, e.g., Q.

5 / 21



Logic on words: examples

ϕ : ∃P
[
P(first) ∧ ¬P(last) ∧ ∀x(P(x)↔ ¬P(S(x))

]
.

I aaaa |= ϕ, but aaaaa 6|= ϕ.

I W |= ϕ iff W has even length.

ψ : ∃x
[
a(x) ∧ ∀y [x < y → (¬a(y) ∧ b(y))]

]
.

I W |= ψ iff

there is a last a-position, with only b-positions after that.

θ : ∀x
[
(∃y x < y)→ (∃s x < s ∧ ∀z(x < z → ¬(z < s))

]
I W |= θ iff

any position that has a successor, has an immediate successor.

I True in every finite word, but not in, e.g., Q.

5 / 21



Logic on words: examples

ϕ : ∃P
[
P(first) ∧ ¬P(last) ∧ ∀x(P(x)↔ ¬P(S(x))

]
.

I aaaa |= ϕ, but aaaaa 6|= ϕ.

I W |= ϕ iff W has even length.

ψ : ∃x
[
a(x) ∧ ∀y [x < y → (¬a(y) ∧ b(y))]

]
.

I W |= ψ iff

there is a last a-position, with only b-positions after that.

θ : ∀x
[
(∃y x < y)→ (∃s x < s ∧ ∀z(x < z → ¬(z < s))

]
I W |= θ iff

any position that has a successor, has an immediate successor.

I True in every finite word, but not in, e.g., Q.

5 / 21



Logic on words: examples

ϕ : ∃P
[
P(first) ∧ ¬P(last) ∧ ∀x(P(x)↔ ¬P(S(x))

]
.

I aaaa |= ϕ, but aaaaa 6|= ϕ.

I W |= ϕ iff W has even length.

ψ : ∃x
[
a(x) ∧ ∀y [x < y → (¬a(y) ∧ b(y))]

]
.

I W |= ψ iff

there is a last a-position, with only b-positions after that.

θ : ∀x
[
(∃y x < y)→ (∃s x < s ∧ ∀z(x < z → ¬(z < s))

]
I W |= θ iff

any position that has a successor, has an immediate successor.

I True in every finite word, but not in, e.g., Q.

5 / 21



Logic on words: examples

ϕ : ∃P
[
P(first) ∧ ¬P(last) ∧ ∀x(P(x)↔ ¬P(S(x))

]
.

I aaaa |= ϕ, but aaaaa 6|= ϕ.

I W |= ϕ iff W has even length.

ψ : ∃x
[
a(x) ∧ ∀y [x < y → (¬a(y) ∧ b(y))]

]
.

I W |= ψ iff

there is a last a-position, with only b-positions after that.

θ : ∀x
[
(∃y x < y)→ (∃s x < s ∧ ∀z(x < z → ¬(z < s))

]

I W |= θ iff

any position that has a successor, has an immediate successor.

I True in every finite word, but not in, e.g., Q.

5 / 21



Logic on words: examples

ϕ : ∃P
[
P(first) ∧ ¬P(last) ∧ ∀x(P(x)↔ ¬P(S(x))

]
.

I aaaa |= ϕ, but aaaaa 6|= ϕ.

I W |= ϕ iff W has even length.

ψ : ∃x
[
a(x) ∧ ∀y [x < y → (¬a(y) ∧ b(y))]

]
.

I W |= ψ iff

there is a last a-position, with only b-positions after that.

θ : ∀x
[
(∃y x < y)→ (∃s x < s ∧ ∀z(x < z → ¬(z < s))

]
I W |= θ iff

any position that has a successor, has an immediate successor.

I True in every finite word, but not in, e.g., Q.

5 / 21



Logic on words: examples

ϕ : ∃P
[
P(first) ∧ ¬P(last) ∧ ∀x(P(x)↔ ¬P(S(x))

]
.

I aaaa |= ϕ, but aaaaa 6|= ϕ.

I W |= ϕ iff W has even length.

ψ : ∃x
[
a(x) ∧ ∀y [x < y → (¬a(y) ∧ b(y))]

]
.

I W |= ψ iff

there is a last a-position, with only b-positions after that.

θ : ∀x
[
(∃y x < y)→ (∃s x < s ∧ ∀z(x < z → ¬(z < s))

]
I W |= θ iff

any position that has a successor, has an immediate successor.

I True in every finite word, but not in, e.g., Q.

5 / 21



Büchi’s theorem

Let L ⊆ Σ∗ be a language and M = Σ∗/≈L its syntactic monoid.

Then

the monoid M is finite

if, and only if,

there is an MSO-sentence ϕ such that L = {w ∈ Σ∗ | w |= ϕ}.
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Schützenberger’s theorem

Let L ⊆ Σ∗ be a language and M = Σ∗/≈L its syntactic monoid.

Then

the monoid M is finite aperiodic (i.e., all subgroups are trivial)

if, and only if,

there is an FO-sentence ϕ such that L = {w ∈ Σ∗ | w |= ϕ}.

6 / 21



Pseudovarieties

I A class of finite monoids is called a pseudovariety if it is closed

under homomorphic images, submonoids and finite products.

I Cf. universal algebra: “variety” of (possibly infinite) algebras.

I Birkhoff’s theorem. Variety = equational class.

I This breaks down for pseudovarieties of finite structures:
I E.g., a finite monoid is aperiodic if, and only if,

∃n ∈ ω such that the equation xn = xn+1 holds.

I → Solution: profinite monoids.
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Profinite monoids

I Let V be a pseudovariety of finite monoids, Σ a finite

alphabet, and assume V ⊇ N, so that finite and cofinite

languages are V-recognizable.

I There exists a unique topological monoid FV(Σ) ⊇ Σ such

that, for any finite monoid M in V:

any function f : Σ→ M has a unique

continuous homomorphic extension f̄ : F̂V(Σ)→ M.

I The property then also holds with respect to pro-V monoids

M, i.e., inverse limits of finite monoids in V, taken in the

category of topological monoids, equivalently Stone spaces

equipped with a continuous monoid operation.
I The clopen sets in F̂V(Σ) are exactly sets of the form L, for L

a language with ML ∈ V.
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The free pro-aperiodic monoid

Now consider the pseudovariety A of aperiodic monoids.

An element u of F̂A(Σ) can be described as:

I an implicit operation (uf )f : Σ→M∈A,

I an ultrafilter of languages

Nu := {L ⊆ Σ∗ with ML aperiodic, u ∈ L},

I a complete first-order theory

Tu := {ϕ first-order sentence | u ∈ Lϕ}.

I an elementary equivalence class of pseudo-finite words.

9 / 21
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Theories of words

I What can the theories Tu, for u ∈ F̂A(Σ), look like?

I It follows from the completeness theorem of first-order logic

that they are exactly the sets of sentences of the form

T (W ) := {ϕ first-order sentence | W |= ϕ},

where W is a first-order structure such that T (W ) contains

Tfin, the set of sentences that are true in all finite words.

I What is Tfin?
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Pseudofinite words

A word is a structure (W , <W , (aW )a∈Σ) where < is a linear order

and the subsets aW form a partition.

A pseudofinite word is, by definition, a model of the first-order

theory Tfin := {ϕ | ϕ a FO-sentence true in all finite Σ-words}.

Theorem
The theory Tfin is not finitely axiomatizable.
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Pseudofinite words: examples and characterization

I Any finite word is pseudofinite.

I aN+Nop
= aaaaa . . . . . . aaaaa

is pseudofinite.

I (ab)N+Z+Nop
= abababab . . . . . . abababab . . . . . . abababab

is pseudofinite.

I aNbN
op

= aaaaa . . . . . . bbbbb

is not pseudofinite.

Proposition (cf. Doets, 1987)

A word W is pseudofinite if, and only if, for every first-order

formula ϕ(x), the set of positions i in W such that ϕ(i) is true has

a least element, or is empty.
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A monoid of pseudofinite words

I Two pseudofinite words W and W ′ are elementarily

equivalent, notation W ≡W ′, if T (W ) = T (W ′), i.e., W and

W ′ satisfy exactly the same first-order sentences.

I If W1 and W2 are pseudofinite words, then their concatenation

W1W2 is again a pseudofinite word. Moreover, concatenation

is invariant under ≡.
I It follows that concatenation gives a continuous monoid

structure on the space of elementary equivalence classes of

pseudofinite words.

Theorem (G. & Steinberg)

The topological monoid of elementary equivalence classes of

pseudofinite words is the free pro-aperiodic monoid F̂A(Σ).
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Homomorphisms between free pro-aperiodic monoids

I Let Σ,Π be finite alphabets. The continuous homomorphisms

h : F̂A(Σ)→ F̂A(Π) can be described as follows.
I For every a ∈ Σ, pick a pseudofinite word Wa in the

elementary equivalence class h(a).
I For any element u of F̂A(Σ), to find the value of h(u), pick a

pseudofinite word U in its elementary equivalence class.
I The model

U[a/Wa],

obtained by substituting for every occurrence of a letter a ∈ Σ

the pseudofinite word Wa, is a pseudofinite word in the

elementary equivalence class h(u).
I For example, the endomorphism x 7→ xω can be realized by

concatenating a word with itself ‘ω times’.
14 / 21
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Choosing a model
I In F̂A({a}), the element aω can be represented by any of the

following elementarily equivalent pseudofinite words:
1. W1 = aN+Nop

2. W2 = aN+Z+Nop

3. W3 = aN+Q×lexZ+Nop

I How to pick one?

I One possibility: bigger is better. Consider the factorization:

aω = aω · a · aω.

I This factorization is not realized in W1, but it is in both W2

and W3.

I However, W2 contains W1 as a closed interval; W3 does not.

I Any closed interval in W3 realizes all possible factorizations.
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ω-Saturated models

I A word is weakly saturated iff it realizes every factorization of

its elementary equivalence class.

I A word is ω-saturated iff every closed interval in it is weakly

saturated.

Theorem (Model theory)

Any elementary equivalence class of A-words contains an

ω-saturated A-word, which is unique up to isomorphism.
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How to use saturated words?

Theorem (G. & Steinberg)

A substitution of ω-saturated words into ω-saturated words is again

ω-saturated.

In particular, ω-saturated words are closed under concatenation and

ρ-power, where ρ is the ω-saturated order N + Q×lexZ + Nop.

The proof combines a topological characterization of weak

saturation with the fact that substitutions are continuous maps

between pro-aperiodic monoids.

17 / 21



How to use saturated words?

Theorem (G. & Steinberg)

A substitution of ω-saturated words into ω-saturated words is again

ω-saturated.

In particular, ω-saturated words are closed under concatenation and

ρ-power, where ρ is the ω-saturated order N + Q×lexZ + Nop.

The proof combines a topological characterization of weak

saturation with the fact that substitutions are continuous maps

between pro-aperiodic monoids.

17 / 21



Equidivisibility

A monoid M is called equidivisible if for any u, v , u′, v ′ in M,

uv = u′v ′ implies that there exists x in M such that ux = u′ and

xv ′ = v , or u′x = u and xv = v ′.

Proposition

The monoid F̂A(Σ) is equidivisible.

Proof.
Let w := uv = u′v ′.

Pick an ω-saturated word W in the class w .

Find x by drawing a picture realizing the two factorizations in

W .
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Deciding the aperiodic ω-word problem

I An ω-term is a term built up from letters in Σ using ()ω and ·.

I The aperiodic ω-word problem asks to decide, given ω-terms s

and t, to decide whether or not they are equal in all finite

aperiodic monoids.

I Huschenbett & Kufleitner (2013) gave a way of interpreting

ω-terms s and t to words Ws and Wt .

I They used a normal form due to McCammond to show that if

s and t are aperiodic-equivalent then Ws and Wt are

isomorphic.

I We can now simply remark that Ws and Wt are ω-saturated,

and therefore isomorphic if they are elementarily equivalent, by

model theory.
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Choosing a model, again

I In F̂A({a}), the element aω can be represented by any of the
following elementarily equivalent pseudofinite words:

1. W1 = aN+Nop

2. W2 = aN+Z+Nop

3. W3 = aN+Q×lexZ+Nop

I Another possibility: smaller is better.

I The word W1 can be elementarily embedded into W2 and into

W3, and indeed into any word of the elementary equivalence

class.

I W1 realizes only the types that are isolated, i.e., which must

be present in every model of the class.

I Such a model is called prime.
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Prime models

Warning. This is where we enter the realm of unpublished notes1.

Theorem
There is a prime model in every class u ∈ F̂A(Σ).

In fact, we prove that this prime model is essentially the linear order

of ‘step points’ associated to an element of the free pro-aperiodic

monoid by J. Almeida, A. Costa, J. C. Costa, M. Zeitoun (2019).

This, combined with uniqueness of prime models, gives an

alternative proof of the fact that the ‘cluster words’ associated to

u, v ∈ F̂A(Σ) are isomorphic iff u = v .

1 https://www.samvangool.net/papers/GS2019primemodels-note.pdf
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