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About this talk

▶ 1st Objective. Show an instance of interaction between

lattice theory, domain theory and automata.

▶ 2nd Objective. Get your feedback on our book:

Mai Gehrke and Sam van Gool. Topological duality for

distributive lattices, and applications.

Preprint, 310pp. arXiv:2203.03286
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The Priestley dual space

▶ In logic, a ‘complete type’ is a process that gives a consistent

yes/no answer to every formula of the logic.

▶ In the algebraic setting of a bounded distributive lattice L, a

complete type is represented by a lattice homomorphism

x : L → 2, or equivalently by a prime filter x−1(⊤) of L.

▶ These homomorphisms form a compact ordered topological

space, XL, known as the Priestley dual space of L.

▶ Priestley spaces are compact ordered spaces satisfying a

strong form of separation by clopen cones.

▶ The lattice L can be recovered from this space XL as the

clopen cones.
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Priestley duality

▶ Algebraic constructions of lattices correspond to topological

constructions of Priestley spaces:

lattice ↔ Priestley space

finite product ↔ disjoint union

quotient lattice ↔ subspace

sublattice ↔ quotient space

▶ These correspondences are thanks to a dual equivalence:

DL ≃op Priestley

lattice homomorphisms continuous monotone functions

L → M XM → XL
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Priestley and Stone

▶ Priestley’s duality is an alternative view on Stone’s original

duality

DL ≃op Spec

▶ Here, Spec is a category of topological spaces that have a

basis of compact-open sets, and maps between such spaces

are required to be spectral, i.e., inverse image preserves

compact-open sets.

▶ The categories Spec and Priestley are isomorphic.
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Modalities

▶ A modality is a function f : L → M that preserves finite meets.

▶ A modality can be described by a lattice homomorphism

J−K : F□(L) → M,

where F□(L) is the lattice of ‘free modal terms’ over L:

F□(L)
def
= FDL(□L)/θ

and θ is the lattice congruence generated by the pairs

(□⊤,⊤) and (□(a ∧ b),□a ∧□b), for a, b ∈ L.

▶ F□ is the comonad induced by the adjunction ∧SLat ⇆ DL.
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Duality for modalities

▶ By duality, a modality f : L → M corresponds to a map

XM → V(XL), where V is the dual of the functor F□.

Proposition

For any Priestley space X , V(X ) is naturally isomorphic to a space

of closed up-sets of X , with appropriate topology.

▶ The space V(X ) is called the upper Vietoris space of X .

Corollary

Modalities on L are in bijection with continuous order-preserving

functions XL → V(XL), i.e., compatible binary relations on XL.
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Filters and Vietoris

We sketch a proof of the fact that V(XL) is dual to F□(L).

▶ The points of the dual space of F□(L) are homomorphisms

F□(L) → 2.

▶ Such homomorphisms are in bijection with modalities L → 2.

▶ Such modalities can be described as filters of L.

▶ A topological argument shows that filters of L correspond to

closed up-sets of XL.

▶ The natural topology on Hom(F□(L), 2) can then be

translated to a topology on the closed up-sets of XL.
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Semantics from duality

Calculating a bit further, we recover the core of Kripke semantics:

a modality □ : L → M

is dual to

the relation R□ : XM 7→ XL defined by:

xR□y

iff

for every a ∈ L, x ∈ □a implies y ∈ a.

(we use the notation “x ∈ a” to mean x(a) = ⊤)
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Implication connectives

▶ In a logic L with at least ∨ and ∧, we will say a connective ⇒
is an implication connective if, for any formulas A,A′,B,B ′,

1. the formulas ⊥ ⇒ A and A ⇒ ⊤ are tautologies of L, and

2. the following two equivalences hold in L:

(A ∨ A′) ⇒ B ≡ (A ⇒ B) ∧ (A′ ⇒ B),

A ⇒ (B ∧ B ′) ≡ (A ⇒ B) ∧ (A ⇒ B ′).
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Implication operators

A more algebraic formulation of the same concept:

▶ A binary operation ⇒ on a bounded distributive lattice L is an

implication operator if, for any elements a, a′, b, b′ of L,

1. ⊥ ⇒ a = ⊤ = a ⇒ ⊤, and

2. the following two equalities hold in L:

(a ∨ a′) ⇒ b = (a ⇒ b) ∧ (a′ ⇒ b),

a ⇒ (b ∧ b′) = (a ⇒ b) ∧ (a ⇒ b′).

▶ Note: given an implication operator ⇒ on L, for every fixed

a ∈ L, the operation b 7→ a ⇒ b is a modality on L.
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Implications, a functorial view

▶ An implication operator on L can be alternatively described by

a lattice homomorphism

J−K : F⇒(L) → L,

where F⇒(L) is the lattice of ‘free implication terms’ over L.

▶ Formally:

F⇒(L)
def
= FDL(L× L)/θ⇒,

where θ⇒ is the congruence generated by the defining

equalities for implication.

▶ Question for the audience: is F⇒ a comonad, like F□ is?
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Duality for implications

▶ By duality, a lattice homomorphism J−K : F⇒(L) → L

corresponds to a map

r : XL → R(XL)

where R is the construction dual to F⇒. But what is this R?

Theorem

The dual space of F⇒(L) is isomorphic to the space of continuous

functions from XL to V(XL) with the compact-to-open topology.
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Duality for implications, proof sketch

▶ For any set X , the dual space of FDL(X ) is 2X .

▶ Since F⇒(L) is defined as a quotient of FDL(L× L), its dual

space is a Priestley-closed subspace of 2L×L.

▶ General methodology. Let θ be a congruence on L

generated by a set of pairs E . Then the dual of L/θ is the

closed subspace of points x ∈ XL that verify all equations in

E , i.e. for any (a, b) ∈ E , x(a) = 1 iff x(b) = 1.

▶ Applying this method to the equations for ⇒, we find a

subspace Z of 2L×L consisting of ‘filtering’ relations on L.

▶ A topological proof then shows that the space Z is naturally

isomorphic to [XL,Filt(L)] ∼= [XL,V(XL)].
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Duality for implications, conclusion

The dual of an implication operator ⇒ on L is a function

r : XL → (XL → V(XL)) such that:

▶ r is spectral, and

▶ for each x ∈ XL, r(x) : XL → V(XL) is continuous.

We write R(X ) for the space of continuous functions [X ,V(X )].
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Semantics from duality for implications

an implication ⇒ : L× L → L

is dual to

the function r⇒ : XL → R(XL) defined by:

xr⇒(z)y

iff

for every a, b ∈ L, if x ∈ a and z ∈ a ⇒ b, then y ∈ b.
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Implication and disjunction

▶ Implication does not need to preserve disjunctions in the

second coordinate; i.e., in logical terms,

(A ⇒ B) ∨ (A ⇒ C ) is stronger than A ⇒ B ∨ C ,

and not always equivalent.

▶ For example, Harrop’s formulas

(¬p → q) ∨ (¬p → r) and ¬p → (q ∨ r)

are not provably equivalent in intuitionistic logic.
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Preserving joins at primes

▶ We say an implication operator ⇒ on a bounded distributive

lattice L preserves joins at primes if

1. a ⇒ ⊥ = ⊥ whenever a ̸= ⊥, and

2. for any prime filter x of L, a ∈ x and for any b, c ∈ L, there

exists a′ ∈ x such that

a ⇒ (b ∨ c) ≤ (a′ ⇒ b) ∨ (a′ ⇒ c).
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Preserving joins at primes, canonical extension view

To explain the terminology, we give an equivalent formulation

using the canonical extension of L, Lδ ∼= Up(XL).

▶ An implication operator ⇒ on L preserves joins at primes iff

for any completely join-prime element x of Lδ, the following

function preserves finite joins:

x ⇒ (−) : L → Lδ,

b 7→
∨

{a ⇒ b | x ≤ a ∈ L}.
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Preserving joins at primes, dually

▶ Among all implication operators, there are the special ones

that preserve joins at primes.

▶ Recall that a general implication operator ⇒ on L corresponds

dually to a function r : XL → R(XL).

▶ What property of r ensures that ⇒ preserves joins at primes?

20 / 30



Functionality

▶ The space XL embeds in V(XL) by sending any point x to its

closed up-set ↑x , and the image is Priestley-closed.

▶ The space [XL,XL] of continuous functions then also embeds

into R(XL) = [XL,V(XL)], by sending f to λx .↑f (x).

▶ Denote the image of this embedding by FR(XL). The

subspace FR(XL) is generally not Priestley-closed in R(XL).

Theorem

Let θ be a congruence on F⇒(L) and let Z be the corresponding

Priestley-closed subspace of R(XL). Then ⇒ preserves joins at

primes modulo θ if, and only if, Z ⊆ FR(XL).
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Join-preserving at primes, semantically

for an implication ⇒ : L× L → L,

the property of preserving joins at primes

is dual to

the function r⇒ : XL → R(XL)

has the functionality property, i.e.,

for every x , z , the set of y such that xR⇒(z)y has a minimum.
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Denotational semantics

▶ When writing a program in an (idealized) language, e.g., a

λ-calculus, a central question is: what do the programs mean?

▶ One way to attach meaning to programs is to give a

compositional interpretation of the language in a category D:

programs become arrows, and types become objects.

▶ In order to express properties of types, and to model untyped

languages, one needs to solve equations such as, e.g.,

X ∼= [X ,X ] ∼= X × X .

▶ An idea pursued by D. Scott, Plotkin, and many others: look

for D inside the category of directedly complete partial orders.

▶ A (very) special subcategory: bifinite domains.

▶ This category has a function space construct and allows for an

incremental solution of equations between domains.
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Domain theory in logical form

▶ A bifinite domain is a partially ordered set that is both a limit

and a colimit of a directed diagram of its finite ‘retracts’.

▶ Link with Stone-Priestley duality:

Bifinite domains are spectral spaces in their Scott topology.

▶ In Domain theory in logical form, S. Abramsky used this link

to analyze the category of bifinite domains via its dual

category of bifinite distributive lattices.
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Preserving joins at primes in bifinite domains

▶ For example, to prove that for any bifinite domain X , the

domain [X ,X ] is again bifinite, one may work with the dual

lattice of [X ,X ]. What is this dual lattice?

▶ Theorem (Abramsky). Let X be a bifinite domain and L the

distributive lattice of compact-open sets of X . Then the space

[X ,X ] is bifinite, and dual to the lattice

F⇒(L)/θj

where θj is the congruence generated by the condition that

the operator ⇒ preserves joins at primes.

▶ Domain equations between bifinite domains like X ∼= [X ,X ]

may now be solved by lattice-theoretic means.
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Regular languages

▶ Regular languages are collections of finite strings in a finite

alphabet Σ that can be described by regular expressions, or

equivalently, by finite automata.

▶ A finite automaton can always be determinized to give a finite

monoid; regular languages are then the subsets of the free

monoid that are saturated under some finite index congruence:

L ⊆ Σ∗ regular ⇐⇒ ∃ Σ∗ f
↠ M finite monoid s.t. L = f −1(f (L)).
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A lattice of regular languages

▶ Fix a finite alphabet Σ.

▶ The collection R of regular languages in Σ forms a

distributive lattice (in fact, even a Boolean algebra).

▶ The lattice R comes equipped with two implication operators:

for regular languages P, L, and S , the languages

P ⇒ L
def
= {w ∈ Σ∗ | ∀p ∈ P, pw ∈ L},

L ⇐ S
def
= {w ∈ Σ∗ | ∀s ∈ S ,ws ∈ L},

are again regular.

▶ These two implication operators thus correspond via duality to

two functions r , ℓ : XR → R(XR).
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The free profinite monoid as a dual space

Lemma. For any x , y ∈ XR, each of the sets ℓ(x)(y) and r(y)(x)

has a unique minimum element, and these two are equal.

Write x • y := min ℓ(x)(y).

Theorem (Gehrke, Grigorieff, Pin 2008)

The Stone space XR equipped with this operation • is isomorphic

to the free profinite monoid over Σ.

Also see V. Moreau’s talk in this workshop for more about this monoid!

▶ Quiz. In the first part, we saw that implication operators

correspond dually to ternary relations X → [X → V(X )]. But

here we have a binary monoid operation X → [X → X ]. Why?
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Preserving joins at primes in profinite algebra

▶ Answer. The implication operators in the lattice of regular

languages preserve joins at primes!

▶ Another special property of this setting, which explains why

the two functions ℓ and r give a single operation, is that ⇒
and ⇐ are residual to each other, i.e.,

S ⊆ P ⇒ L ⇐⇒ P ⊆ L ⇐ S .

▶ The example of regular languages generalizes to:

Theorem (Gehrke 2016)

Topological algebras on a Boolean space X are dual to Boolean

algebras equipped with residuated implication operators that

preserve joins at primes.
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A textbook on duality theory

▶ If you’d like to learn more about all this...

Mai Gehrke and Sam van Gool. Topological duality for

distributive lattices, and applications.

Preprint (v2), 310pp, May 2022. arXiv:2203.03286

▶ The first seven chapters are available now and the last chapter

(on automata and profinite monoids) will be added soon.

▶ Any questions or feedback on the draft are very welcome at:

vangool@irif.fr mgehrke@unice.fr
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