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About this talk

I Objective. Show an instance of interaction between

logical algebra, model theory and automata.

I Format. Part tutorial (∼20m), part research talk (∼40m).
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Three ways of describing a regular language

I A programming problem: given a natural number in binary,

w ∈ {0, 1}∗, determine if w is congruent 1 modulo 3.

I Solution 1: a (deterministic) automaton A:

q0 q1 q2

1

0

1

0

0

1

Answer yes iff A accepts w .

I Solution 2: a homomorphism ϕ : {0, 1}∗ → S3 defined by

0 7→ (1 2), 1 7→ (0 1).

Answer yes iff the permutation ϕ(w) sends 0 to 1.

.
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w ∈ {0, 1}∗, determine if w is congruent 1 modulo 3.

I Solution 1: a (deterministic) automaton A:

q0 q1 q2

1

0

1

0

0

1

Answer yes iff A accepts w .

I Solution 3: a predicate formula ϕ describing A:

∃Q0∃Q1∃Q2(Q0(first) ∧ Q1(last)∧

∀x [0(x) ∧ Q0(x)→ Q0(Sx)] ∧ [1(x) ∧ Q0(x)→ Q1(Sx)] ∧ . . . ).

Answer yes iff w satisfies the formula ϕ.
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Predicate logic on finite words

I Syntax. Monadic Second Order (MSO) logic over <, Σ.

I Basic propositional connectives: ∧, ¬.

I Quantification over first-order variables x , y , . . . and

one-place (monadic) second-order variables P, Q, . . . .

I Relational signature: x < y , a(x) for a ∈ Σ.

I Semantics. A finite word w = a1 . . . an gives a structure W .

I The underlying set of W is {1, . . . , n}.
I The natural linear order <W interprets the binary predicate <.

I For every letter a ∈ Σ, aW := {i ∈ {1, . . . , n} : ai = a}.
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Algebra on two levels

I The collection of finite Σ-words has monoid structure, i.e., an

associative operation with unit.

I The collection of sets of finite Σ-words (Σ-languages), has

Boolean algebra structure, i.e., a ring in which all elements

are idempotent, which is moreover equipped with ‘modal’

operators, such as, for any Σ-language L,

a−1L := {w ∈ Σ∗ : aw ∈ L}, a ∈ Σ.

I This phenomenon of ‘algebra on two levels’ is a special

instance of Stone duality.
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Boolean algebras of languages

I The set Sent(Σ) of all MSO-sentences over a fixed finite

alphabet Σ carries a preorder, `:

ϕ ` ψ ⇐⇒ for every finite word W , if W |= ϕ, then W |= ψ.

I The quotient of Sent(Σ) under `-equivalence is a Boolean

algebra, R(Σ):

[ϕ] · [ψ] := [ϕ ∧ ψ], [ϕ] + [ψ] := [ϕ xor ψ], 0 := [⊥].

I Theorem (Büchi 1960). The image of the injection

R(Σ) ↪→ P(Σ∗), ϕ 7→ {W ∈ Σ∗ | W |= ϕ}

consists of the regular Σ-languages.
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I Theorem (Büchi 1960). The image of the injection

R(Σ) ↪→ P(Σ∗), ϕ 7→ {W ∈ Σ∗ | W |= ϕ}

consists of the regular Σ-languages.

6 / 33



Boolean algebras of languages

I The set Sent(Σ) of all MSO-sentences over a fixed finite

alphabet Σ carries a preorder, `:

ϕ ` ψ ⇐⇒ for every finite word W , if W |= ϕ, then W |= ψ.

I The quotient of Sent(Σ) under `-equivalence is a Boolean

algebra, R(Σ):

[ϕ] · [ψ] := [ϕ ∧ ψ], [ϕ] + [ψ] := [ϕ xor ψ], 0 := [⊥].
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Logical algebra

I The abstractions of arithmetic algebra allow us not to think

about concrete numbers, but also treat other entities, such as

polynomials and permutations, as if they are numbers.

I The abstractions of logical algebra allow us not to think about

concrete formulas, but also treat other entities, such as

languages and other sets, as if they are formulas.
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Boolean algebras as lattices

I A bounded lattice is a tuple (L,≤,∨,∧,⊥,>), where ≤ is a

partial order, and for any a, b ∈ L, a ∨ b = sup{a, b},
a ∧ b = inf{a, b}, ⊥ = sup ∅, and > = inf ∅.

I Note that ≤ is definable from ∨ or ∧.

I Bounded lattices can be axiomatized without ≤.

I A bounded lattice L is distributive if, for any a, b, c ∈ L,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

I A Boolean algebra is a tuple (B,∨,∧,¬,⊥,>) where

I (B,∨,∧,⊥,>) is a bounded distributive lattice;

I for any a ∈ B, a ∨ ¬a = > and a ∧ ¬a = ⊥.

I Exercise. Boolean algebras are term-equivalent with

idempotent commutative rings with unit.
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Terms as formulas

I A polynomial, e.g., xy − x2, gets a value whenever its

variables are assigned values in a ring.

I A propositional formula, e.g., (x ∧ y) ∨ ¬(x ∨ x), gets a value

whenever its variables are assigned values in a Boolean

algebra.

I The familiar truth tables compute these values under

assignment to the two-element Boolean algebra {⊥,>}.

I In other logics, a single finite algebra is not enough.
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Logic from algebra

I Propositional logic in variables x1, . . . , xn is the set of Boolean

algebra terms that evaluate to > under any assignment to a

Boolean algebra.

I Modal logic in variables x1, . . . , xn is the set of modal algebra

terms that evaluate to > under any assignment to a modal

algebra.

I A modal algebra is a pair (B,�) where B is a Boolean algebra

and � : B → B preserves ∧ and >.

I Linear temporal logic in variables x1, . . . , xn is the set of

LTL-algebra terms that evaluate to > under any assignment

to an LTL-algebra.

I We will define (a variant of) LTL-algebras in Part II.

I Intuitionistic logic ... Heyting algebras.
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Heyting algebras

I A Heyting algebra is a tuple (H,∧,∨,⊥,>,→), where

I (H,∧,∨,⊥,>) is a bounded distributive lattice,

I → is a relative pseudocomplement, that is, for any a, b, c ∈ H,

a ∧ b ≤ c iff a ≤ b → c .

I Intuitionistic logic in variables x1, . . . , xn is the set of Heyting

algebra terms that evaluate to > under any assignment to a

Heyting algebra.

I Exercise. Write ¬a := a→ ⊥, a↔ b := (a→ b) ∧ (b → a).

The term (x ∧ ¬x)↔ ⊥ is in intuitionistic logic, but

(x ∨ ¬x)↔ > is not.

I Exercise (non-trivial). There are infinitely many

non-equivalent terms in a single variable x .

11 / 33



Heyting algebras

I A Heyting algebra is a tuple (H,∧,∨,⊥,>,→), where

I (H,∧,∨,⊥,>) is a bounded distributive lattice,

I → is a relative pseudocomplement, that is, for any a, b, c ∈ H,

a ∧ b ≤ c iff a ≤ b → c .

I Intuitionistic logic in variables x1, . . . , xn is the set of Heyting

algebra terms that evaluate to > under any assignment to a

Heyting algebra.

I Exercise. Write ¬a := a→ ⊥, a↔ b := (a→ b) ∧ (b → a).

The term (x ∧ ¬x)↔ ⊥ is in intuitionistic logic, but

(x ∨ ¬x)↔ > is not.

I Exercise (non-trivial). There are infinitely many

non-equivalent terms in a single variable x .

11 / 33



Heyting algebras

I A Heyting algebra is a tuple (H,∧,∨,⊥,>,→), where

I (H,∧,∨,⊥,>) is a bounded distributive lattice,

I → is a relative pseudocomplement, that is, for any a, b, c ∈ H,

a ∧ b ≤ c iff a ≤ b → c .

I Intuitionistic logic in variables x1, . . . , xn is the set of Heyting

algebra terms that evaluate to > under any assignment to a

Heyting algebra.

I Exercise. Write ¬a := a→ ⊥, a↔ b := (a→ b) ∧ (b → a).

The term (x ∧ ¬x)↔ ⊥ is in intuitionistic logic, but

(x ∨ ¬x)↔ > is not.

I Exercise (non-trivial). There are infinitely many

non-equivalent terms in a single variable x .

11 / 33



Heyting algebras

I A Heyting algebra is a tuple (H,∧,∨,⊥,>,→), where

I (H,∧,∨,⊥,>) is a bounded distributive lattice,

I → is a relative pseudocomplement, that is, for any a, b, c ∈ H,

a ∧ b ≤ c iff a ≤ b → c .

I Intuitionistic logic in variables x1, . . . , xn is the set of Heyting

algebra terms that evaluate to > under any assignment to a

Heyting algebra.

I Exercise. Write ¬a := a→ ⊥, a↔ b := (a→ b) ∧ (b → a).

The term (x ∧ ¬x)↔ ⊥ is in intuitionistic logic, but

(x ∨ ¬x)↔ > is not.

I Exercise (non-trivial). There are infinitely many

non-equivalent terms in a single variable x .

11 / 33



Summary of Part I: Tutorial

I Monadic second order logic has the same expressive power as

finite automata.

I Boolean algebras are abstract algebraic models for

propositional logic.

I Generalizing Boolean algebras in various directions (modal,

temporal, and Heyting algebras) allows one to talk about

different logics in one algebraic framework.
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Model theory

I Model theory studies classes of (algebraic) structures through

the lens of first order logic.

I Usually, the structures studied are classical: fields, groups, . . . .

I In this work, we apply model theory to structures from logical

algebra, that is, to Boolean algebras, to Heyting algebras, to

LTL algebras, and more.
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Solving equations

I Solve for x ∈ R: x2 + 1 = 0.

I A field F is existentially closed if any existential sentence that

becomes true in some field extension of F already holds in F .

I This is first order definable: F is existentially closed iff

for every non-constant polynomial p, F |= ∃xp(x) = 0.

I A T -structure A is existentially closed∗ if any existential

sentence that becomes true in some T -structure extending A

already holds in A.

I This property is often first order definable:

I Linear orders without endpoints: density;

I Boolean algebras: atomless;

I Heyting algebras: I will sketch this a few slides from now.

∗ If the class of T -structures does not have amalgamation, a more complicated definition is needed.
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Model companion

A first order theory T ∗ which captures the existentially closed

models for a universal theory T is called a model companion of T .

Theorem.

The theory T ∗, if it exists, is the unique theory such that:

1. T and T ∗ believe the same universal sentences;

T and T ∗ are co-theories

2. For any sentence ϕ, there is an existential sentence ϕ′ such that T ∗

believes ϕ↔ ϕ′.

T ∗ is model complete

Robinson, 1963
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MSO on omega is the model companion of LTL
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MSO on omega is the model companion of LTL

Joint work with Silvio Ghilardi (Milan).
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Model companions and languages

Theorem.

The first order theory T ∗ of an algebra for word languages, P(ω),

is the model companion of

a theory T of algebras for a fragment of linear temporal logic.

“MSO on ω is the model companion of LTL”

Ghilardi & G. JSL 2017

For convenience, we switch from finite words to ω-words for this part.
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The theory T ∗: the generic LTL-algebra

I The Boolean algebra P(ω) carries temporal operators:

I Xa := {t ∈ ω | t + 1 ∈ a},
I Fa := {t ∈ ω | ∃t ′ ≥ t : t ′ ∈ a},
I I := {0}.

I The theory T ∗ is the theory, Th(P(ω)), of this (single)

structure, in the signature {∨,∧,⊥,>,¬,X,F, I} ∪ {=}.

I Exercise. Let ϕ be an (X,F, I)-formula in variables x1, . . . , xn.

For each 1 ≤ i ≤ n, let Xi ⊆ ω. For any t ∈ ω, we have

t ∈ ϕP(ω)(X ) iff ϕ holds at t in the Kripke model (ω,X ).
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The theory T : general LTL-algebras

I A linear temporal algebra is a tuple (B,X,F, I), where

I B = (B,∨,∧,¬,⊥,>) is a Boolean algebra;

I X is an endomorphism of B;

I I is an atom, XI = ⊥, and I ≤ Xa when a 6= ⊥.
I for any a ∈ B, Fa is the least fixed point of x 7→ a ∨ Xx , i.e.,

I a ∨ XFa ≤ Fa, and

I for any b ∈ B, if a ∨ Xb ≤ b, then Fa ≤ b.

I T is the theory of the linear temporal algebras.

I Theorem. T ∗ = Th(P(ω)) is the model companion of T .

I Co-theories: a non-trivial exercise.

I Model completeness of T ∗: automata!

19 / 33



The theory T : general LTL-algebras

I A linear temporal algebra is a tuple (B,X,F, I), where

I B = (B,∨,∧,¬,⊥,>) is a Boolean algebra;

I X is an endomorphism of B;

I I is an atom, XI = ⊥, and I ≤ Xa when a 6= ⊥.
I for any a ∈ B, Fa is the least fixed point of x 7→ a ∨ Xx , i.e.,

I a ∨ XFa ≤ Fa, and

I for any b ∈ B, if a ∨ Xb ≤ b, then Fa ≤ b.

I T is the theory of the linear temporal algebras.

I Theorem. T ∗ = Th(P(ω)) is the model companion of T .

I Co-theories: a non-trivial exercise.

I Model completeness of T ∗: automata!

19 / 33



The theory T : general LTL-algebras

I A linear temporal algebra is a tuple (B,X,F, I), where

I B = (B,∨,∧,¬,⊥,>) is a Boolean algebra;

I X is an endomorphism of B;

I I is an atom, XI = ⊥, and I ≤ Xa when a 6= ⊥.
I for any a ∈ B, Fa is the least fixed point of x 7→ a ∨ Xx , i.e.,

I a ∨ XFa ≤ Fa, and

I for any b ∈ B, if a ∨ Xb ≤ b, then Fa ≤ b.

I T is the theory of the linear temporal algebras.

I Theorem. T ∗ = Th(P(ω)) is the model companion of T .

I Co-theories: a non-trivial exercise.

I Model completeness of T ∗: automata!

19 / 33



The theory T : general LTL-algebras

I A linear temporal algebra is a tuple (B,X,F, I), where

I B = (B,∨,∧,¬,⊥,>) is a Boolean algebra;

I X is an endomorphism of B;

I I is an atom, XI = ⊥, and I ≤ Xa when a 6= ⊥.
I for any a ∈ B, Fa is the least fixed point of x 7→ a ∨ Xx , i.e.,

I a ∨ XFa ≤ Fa, and

I for any b ∈ B, if a ∨ Xb ≤ b, then Fa ≤ b.

I T is the theory of the linear temporal algebras.

I Theorem. T ∗ = Th(P(ω)) is the model companion of T .

I Co-theories: a non-trivial exercise.

I Model completeness of T ∗: automata!

19 / 33



The theory T : general LTL-algebras

I A linear temporal algebra is a tuple (B,X,F, I), where

I B = (B,∨,∧,¬,⊥,>) is a Boolean algebra;

I X is an endomorphism of B;

I I is an atom, XI = ⊥, and I ≤ Xa when a 6= ⊥.
I for any a ∈ B, Fa is the least fixed point of x 7→ a ∨ Xx , i.e.,

I a ∨ XFa ≤ Fa, and

I for any b ∈ B, if a ∨ Xb ≤ b, then Fa ≤ b.

I T is the theory of the linear temporal algebras.

I Theorem. T ∗ = Th(P(ω)) is the model companion of T .

I Co-theories: a non-trivial exercise.

I Model completeness of T ∗: automata!

19 / 33



The theory T : general LTL-algebras

I A linear temporal algebra is a tuple (B,X,F, I), where

I B = (B,∨,∧,¬,⊥,>) is a Boolean algebra;

I X is an endomorphism of B;

I I is an atom, XI = ⊥, and I ≤ Xa when a 6= ⊥.
I for any a ∈ B, Fa is the least fixed point of x 7→ a ∨ Xx , i.e.,

I a ∨ XFa ≤ Fa, and

I for any b ∈ B, if a ∨ Xb ≤ b, then Fa ≤ b.

I T is the theory of the linear temporal algebras.

I Theorem. T ∗ = Th(P(ω)) is the model companion of T .

I Co-theories: a non-trivial exercise.

I Model completeness of T ∗: automata!

19 / 33



Recall our first example

I A programming problem: given a natural number in binary,

w ∈ {0, 1}∗, determine if w is congruent 1 modulo 3.

I Solution 1: a (deterministic) automaton A:

q0 q1 q2

1

0

1

0

0

1

Answer yes iff A accepts w .

I Solution 3: a predicate formula ϕ describing A:

∃Q0∃Q1∃Q2(Q0(first) ∧ Q1(last)∧

∀x [0(x) ∧ Q0(x)→ Q0(Sx)] ∧ [1(x) ∧ Q0(x)→ Q1(Sx)] ∧ . . . ).

Answer yes iff w satisfies the formula ϕ.
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Proving model completeness with automata

T ∗, theory of P(ω)

MSO(ω)

Word automaton

“standard translation” Büchi’s Theorem

existential descriptionexistential description
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An existential description of a word automaton

I Let A = (Q,Σ, δ, q0,F ) be a word automaton over a finite

alphabet Σ, i.e., a function δ : Q × Σ→ P(Q), an initial state

q0 ∈ Q and a subset F ⊆ Q of final states.

I Write Σ = {0, . . . , s}, Q = {0, . . . ,m}, q0 = 0.

I A word W : ω → Σ is a partition (W0, . . . ,Ws) of ω; Wj = W−1(j).

Key Observation. The automaton A accepts a word W : ω → Σ

iff P(ω), [wi 7→Wi ] |= α(w0, . . . ,ws), where α is the ∃ L-formula:

∃q0, . . . , qm(“the qi partition ω”& &
0≤i≤m
0≤j≤s

qi ∧ wj ≤
∨

k∈δ(i ,j)

Xqk


& I ≤ q0 & F

(∨
i∈F qi

)
= >).
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Proof outline: T ∗ is model complete

I Any first order formula ϕ in the temporal algebra P(ω)

translates to an MSO formula Φ in logic on ω-words.

I This MSO formula Φ defines a regular language LΦ.

I Build an automaton A for LΦ.

I Describe the automaton A with an existential first order

formula ϕ′ in the temporal algebra P(ω).

I Conclusion. P(ω) believes that any first order formula ϕ is

equivalent to an existential formula ϕ′.
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Model companions and languages

Theorem.

The first order theory T ∗ of an algebra for word languages, P(ω),

is the model companion of

a theory T of algebras for a linear temporal logic.

Ghilardi & G. JSL 2017
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Model companions and languages

Theorem.

The first order theory T ∗ of an algebra for tree languages, P(2∗),

is the model companion of

a theory T of algebras for a fair computation tree logic.

Ghilardi & G. LICS 2016
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Tree automata

I Suppose (T ,R) is a tree with root t0, and let σ : T → Σ.

I A tree automaton A is a tuple (Q,Σ, δ, q0,Ω), where

δ : Q × Σ→ PP(Q), q0 ∈ Q, and Ω: Q → ω.

I A run of A on (T ,R, t0, σ) is a function r : T → Q such that

r(t0) = q0 and {r(t ′) | tRt ′} ∈ δ(r(t), σ(t)) for all t ∈ T .

I The automaton A accepts (T ,R, t0, σ) if there is a run r such

that, for every infinite path (ti )
ω
i=1 in T , the number

min{Ω(q) | r(ti ) = q for infinitely many i}

is even.
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Rabin-Janin-Walukiewicz theorem

Theorem (Rabin 1969, Janin & Walukiewicz 1995)

For any MSO formula Φ(p), there exists an automaton AΦ on the

alphabet Σ = 2p such that, for any tree (T ,R, t0) and colouring

σ : T → Σ,

Tω, σω |= Φ(p) ⇐⇒ AΦ accepts (Tω, σω).

Here, Tω is the ω-unravelling of the tree T .
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P(T ) as an algebra for fair CTL

I Problem: what is the appropriate enrichment of Boolean

algebras to capture the acceptance condition of tree

automata?

I Solution: a version of CTL with local fairness constraints.
I For P,Q ⊆ T , define

I EU(P,Q) := {t ∈ T | there exists a finite path starting in t

and ending in Q, which stays in P until (excl.) the end}.
I AF(P,Q) := {t ∈ T | for every infinite path starting in t, if

the path visits T \ Q infinitely often, then some node on the

path is in P}.
I A run r with associated partition q of T will be accepting iff,

for every odd n in the range of Ω,

AF

 ∨
Ω(q′)<n

q′,¬

 ∨
Ω(q)=n

q

 = >.
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Axiomatizing fair CTL

I Boolean algebra axioms,

I Standard axioms for ♦ and I,

I Fixpoint axioms and rules for EU:

a ∨ (b ∧ ♦EU(a, b)) ≤ EU(ϕ,ψ)

a ∨ (b ∧ ♦c) ≤ c

EU(a, b) ≤ c

I and for EG:

EG(a, b) ≤ a ∧ ♦EU(b ∧ EG(a, b), a)

c ≤ a ∧ ♦EU(b ∧ c , a)

c → EG(a, b)

I AF is an abbrevation, AF(ϕ,ψ) := ¬EG(¬ϕ,¬ψ).
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Algebras for fair CTL

I A fair CTL algebra is a tuple (A, I,♦,EG,EU) such that

I A is a Boolean algebra,

I I is a constant symbol,

I ♦ is a unary operation,

I EG and EU are binary operations,

I the universal axioms on the previous slide are satisfied.

I Theorem. A fair CTL formula ϕ is true in all trees iff ϕ

evaluates to > under any assignment to a fair CTL algebra.

I The proof uses a non-trivial tableau construction, and mimicks

Walukiewicz’ proof of completeness of the modal µ calculus.

I There are interesting open questions here.

I Given this result, the tree automata from the

Rabin-Janin-Walukiewicz theorem can be used to prove that

the theory of fair CTL algebras has a model companion.

29 / 33



Algebras for fair CTL

I A fair CTL algebra is a tuple (A, I,♦,EG,EU) such that

I A is a Boolean algebra,

I I is a constant symbol,

I ♦ is a unary operation,

I EG and EU are binary operations,

I the universal axioms on the previous slide are satisfied.

I Theorem. A fair CTL formula ϕ is true in all trees iff ϕ

evaluates to > under any assignment to a fair CTL algebra.

I The proof uses a non-trivial tableau construction, and mimicks

Walukiewicz’ proof of completeness of the modal µ calculus.

I There are interesting open questions here.

I Given this result, the tree automata from the

Rabin-Janin-Walukiewicz theorem can be used to prove that

the theory of fair CTL algebras has a model companion.

29 / 33



Algebras for fair CTL

I A fair CTL algebra is a tuple (A, I,♦,EG,EU) such that

I A is a Boolean algebra,

I I is a constant symbol,

I ♦ is a unary operation,

I EG and EU are binary operations,

I the universal axioms on the previous slide are satisfied.

I Theorem. A fair CTL formula ϕ is true in all trees iff ϕ

evaluates to > under any assignment to a fair CTL algebra.

I The proof uses a non-trivial tableau construction, and mimicks

Walukiewicz’ proof of completeness of the modal µ calculus.

I There are interesting open questions here.

I Given this result, the tree automata from the

Rabin-Janin-Walukiewicz theorem can be used to prove that

the theory of fair CTL algebras has a model companion.

29 / 33



Algebras for fair CTL

I A fair CTL algebra is a tuple (A, I,♦,EG,EU) such that

I A is a Boolean algebra,

I I is a constant symbol,

I ♦ is a unary operation,

I EG and EU are binary operations,

I the universal axioms on the previous slide are satisfied.

I Theorem. A fair CTL formula ϕ is true in all trees iff ϕ

evaluates to > under any assignment to a fair CTL algebra.

I The proof uses a non-trivial tableau construction, and mimicks

Walukiewicz’ proof of completeness of the modal µ calculus.

I There are interesting open questions here.

I Given this result, the tree automata from the

Rabin-Janin-Walukiewicz theorem can be used to prove that

the theory of fair CTL algebras has a model companion.

29 / 33



Algebras for fair CTL

I A fair CTL algebra is a tuple (A, I,♦,EG,EU) such that

I A is a Boolean algebra,

I I is a constant symbol,

I ♦ is a unary operation,

I EG and EU are binary operations,

I the universal axioms on the previous slide are satisfied.

I Theorem. A fair CTL formula ϕ is true in all trees iff ϕ

evaluates to > under any assignment to a fair CTL algebra.

I The proof uses a non-trivial tableau construction, and mimicks

Walukiewicz’ proof of completeness of the modal µ calculus.

I There are interesting open questions here.

I Given this result, the tree automata from the

Rabin-Janin-Walukiewicz theorem can be used to prove that

the theory of fair CTL algebras has a model companion.

29 / 33



Overview

Part I: A tutorial on algebra in logic

Regular languages and logic

Logical algebra

Part II: Model completeness in logical algebra

Model completeness and model companions

MSO on omega is the model companion of LTL

An excursion to trees

An excursion to Heyting
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So what about Heyting algebras?

I The theory of Heyting algebras also has a model companion,

but for (apparently) very different reasons.

I Pitts’ Uniform Interpolation Theorem (1992) shows that

Intuitionistic Propositional Logic (IPL) can interpret monadic

second order quantifiers.

I More precisely, for every Heyting term ϕ(x , y), there exist

Heyting terms ϕy (x) and ϕy (x), effectively computable from

ϕ, such that, for any ψ and θ not containing q,

HA |= ϕ ≤ ψ ⇐⇒ HA |= ϕy ≤ ψ,

HA |= θ ≤ ϕ ⇐⇒ HA |= θ ≤ ϕy .

I For a different, topological proof of Pitts’ theorem, see my paper with

Reggio, Top. Appl. 2018.
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The model companion of Heyting algebras

I Ghilardi and Zawadowski, 1995, use Pitts’ theorem to give an

effective (infinite) first order axiomatization of the class of

existentially closed Heyting algebras.

I For a Heyting algebra A, the solvability of a quantifier-free

formula in an extension of A can be expressed using Pitts’

operators (−)y and (−)y .

I Pitts’ operators thus roughly play the role for Heyting algebras

that automata played in our results on LTL and CTL.

I Can we say more about this analogy?
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Summary of Part II: Model companions

I Model companions are a logical way to think about

existentially closed structures; the canonical example is

algebraically closed fields.

I Logical algebras, in particular those for linear temporal logic

and computation tree logic, admit model companions.

I Automata are crucially used in the proofs, to eliminate

alternations of quantifiers.

I Heyting algebras have a model companion too, albeit for an

(apparently) different reason.
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Summary

I Part I: How algebraic methods can play a role in logic

I Part II: How model theory interacts with automata theory

I Thank you!
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