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> A programming problem: given a natural number in binary,

w € {0,1}*, determine if w is congruent 1 modulo 3.
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Three ways of describing a regular language

> A programming problem: given a natural number in binary,

w € {0,1}*, determine if w is congruent 1 modulo 3.

» Solution 1: a (deterministic) automaton A:

0 1
1 0
Answer ves iff A accepts w.

» Solution 2: a homomorphism ¢: {0,1}* — S3 defined by
0—(12), 1+~ (01).
Answer ves iff the permutation ¢(w) sends 0 to 1.
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Three ways of describing a regular language

> A programming problem: given a natural number in binary,

w € {0,1}*, determine if w is congruent 1 modulo 3.

» Solution 1: a (deterministic) automaton A:

0 1
8/\
1 0
Answer ves iff A accepts w.
> Solution 3: a predicate formula ¢ describing A:

HQQHQlaQQ(Qo(fiI‘St) AN Ql(last)/\
Vx[0(x) A Qo(x) = Qo(Sx)] A [1(x) A Qo(x) = Qi(Sx)]A...).
Answer yes iff w satisfies the formula .
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Predicate logic on finite words

» Syntax. Monadic Second Order (MSO) logic over <, X.

» Basic propositional connectives: A, —.

» Quantification over first-order variables x, y, ...and
one-place (monadic) second-order variables P, Q, ....

> Relational signature: x < y, a(x) for a € ¥.
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» Syntax. Monadic Second Order (MSO) logic over <, X.

» Basic propositional connectives: A, —.

» Quantification over first-order variables x, y, ...and
one-place (monadic) second-order variables P, Q, ....

> Relational signature: x < y, a(x) for a € ¥.

» Semantics. A finite word w = a7 ... a, gives a structure W.

» The underlying set of W is {1,..., n}.
» The natural linear order <" interprets the binary predicate <.

> For every letter ac ¥, a¥ := {i € {1,...,n}: a; = a}.
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Predicate logic on finite words

» Syntax. Monadic Second Order (MSO) logic over <, X.

» Semantics. A finite word w = a3 ... a, gives a structure W.

» For a sentence ¢, L, :={w € X* | w = p}.
» Shortcuts Sx, first, last, C are MSO-definable.
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Algebra on two levels

» The collection of finite ¥-words has monoid structure, i.e., an

associative operation with unit.
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associative operation with unit.

» The collection of sets of finite X-words (X-languages), has
Boolean algebra structure, i.e., a ring in which all elements
are idempotent, which is moreover equipped with ‘modal’

operators, such as, for any ¥-language L,

all:={weX* :awel}, acx.

» This phenomenon of ‘algebra on two levels’ is a special

instance of Stone duality.
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Boolean algebras of languages

> The set Sent(X) of all MSO-sentences over a fixed finite
alphabet X carries a preorder, |-:

w1 <= for every finite word W, if W = ¢, then W |= 9.
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Boolean algebras of languages

> The set Sent(X) of all MSO-sentences over a fixed finite
alphabet X carries a preorder, |-:

w1 <= for every finite word W, if W = ¢, then W |= 9.

» The quotient of Sent(X) under --equivalence is a Boolean
algebra, R(X):

[P]- [l =lpAdl el + [¥] = [pxor 4], 0:=[L].
» Theorem (Biichi 1960). The image of the injection
R(X) = P(X¥), o= {WeX"|Wkyp}

consists of the regular X-languages.
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Logical algebra

» The abstractions of arithmetic algebra allow us not to think
about concrete numbers, but also treat other entities, such as

polynomials and permutations, as if they are numbers.
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Logical algebra

» The abstractions of arithmetic algebra allow us not to think
about concrete numbers, but also treat other entities, such as

polynomials and permutations, as if they are numbers.

» The abstractions of logical algebra allow us not to think about
concrete formulas, but also treat other entities, such as

languages and other sets, as if they are formulas.
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Boolean algebras as lattices
» A bounded lattice is a tuple (L, <,V,A, L, T), where <is a

partial order, and for any a,b € L, aV b = sup{a, b},
aAb=inf{a, b}, L =sup@, and T =inf{.
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partial order, and for any a,b € L, aV b = sup{a, b},
aAb=inf{a, b}, L =sup@, and T =inf{.

> Note that < is definable from V or A.
» Bounded lattices can be axiomatized without <.
» A bounded lattice L is distributive if, for any a, b, c € L,

an(bvc)=(anb)V(anc).

» A Boolean algebra is a tuple (B,V,A,—, L, T) where
> (B,V,A, L, T)is a bounded distributive lattice;
» foranya€e B,av-a=TandaA—-a= 1.

> Exercise. Boolean algebras are term-equivalent with

idempotent commutative rings with unit.
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Terms as formulas

» A polynomial, e.g., xy — x2, gets a value whenever its

variables are assigned values in a ring.
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Terms as formulas

» A polynomial, e.g., xy — x2, gets a value whenever its

variables are assigned values in a ring.

> A propositional formula, e.g., (x A y) V =(x V x), gets a value
whenever its variables are assigned values in a Boolean

algebra.

» The familiar truth tables compute these values under

assignment to the two-element Boolean algebra { L, T}.

» In other logics, a single finite algebra is not enough.
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terms that evaluate to T under any assignment to a modal
algebra.

» A modal algebra is a pair (B,0) where B is a Boolean algebra
and [J: B — B preserves A and T.

» Linear temporal logic in variables xi, ..., X, is the set of
LTL-algebra terms that evaluate to T under any assignment
to an LTL-algebra.

> We will define (a variant of) LTL-algebras in Part II.

» Intuitionistic logic ... Heyting algebras.
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Heyting algebras

» A Heyting algebra is a tuple (H, A, V, L, T, —), where
» (H,A,V, L, T)is a bounded distributive lattice,

» — is a relative pseudocomplement, that is, for any a, b,c € H,

anb<ciffa<b—ec.
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Heyting algebras

» A Heyting algebra is a tuple (H, A, V, L, T, —), where
» (H,A,V, L, T)is a bounded distributive lattice,

» — is a relative pseudocomplement, that is, for any a, b,c € H,

anb<ciffa<b—ec.

» Intuitionistic logic in variables xi, ..., x, is the set of Heyting
algebra terms that evaluate to T under any assignment to a
Heyting algebra.

» Exercise. Write ma:=a— 1, a< b:=(a— b)A(b— a).
The term (x A =x) <> L is in intuitionistic logic, but
(x V =x) <> T is not.

» Exercise (non-trivial). There are infinitely many

non-equivalent terms in a single variable x.
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Summary of Part I: Tutorial

» Monadic second order logic has the same expressive power as
finite automata.

» Boolean algebras are abstract algebraic models for
propositional logic.

» Generalizing Boolean algebras in various directions (modal,
temporal, and Heyting algebras) allows one to talk about

different logics in one algebraic framework.
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Model theory

» Model theory studies classes of (algebraic) structures through
the lens of first order logic.
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Model

theory

Model theory studies classes of (algebraic) structures through
the lens of first order logic.

Usually, the structures studied are classical: fields, groups, .. ..

In this work, we apply model theory to structures from logical
algebra, that is, to Boolean algebras, to Heyting algebras, to
LTL algebras, and more.
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Solving equations
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Solving equations

» Solve for x € C: x2+1=0.

> A field F is existentially closed if any existential sentence that
becomes true in some field extension of F already holds in F.
» This is first order definable: F is existentially closed iff
for every non-constant polynomial p, F = 3xp(x) = 0.

> A T-structure A is existentially closed® if any existential
sentence that becomes true in some T-structure extending A
already holds in A.
» This property is often first order definable:
» Linear orders without endpoints: density;
» Boolean algebras: atomless;
» Heyting algebras: | will sketch this a few slides from now.

* If the class of T-structures does not have amalgamation, a more complicated definition is needed.
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Model companion

A first order theory T* which captures the existentially closed

models for a universal theory T is called a model companion of T.

Theorem.
The theory T7, if it exists, is the unique theory such that:

1. T and T* believe the same universal sentences;

2. For any sentence ¢, there is an existential sentence ¢’ such that T*

believes ¢ <+ .

Robinson, 1963
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Model companion

A first order theory T* which captures the existentially closed

models for a universal theory T is called a model companion of T.

Theorem.
The theory T7, if it exists, is the unique theory such that:

1. T and T* believe the same universal sentences;

T and T are co-theories

2. For any sentence ¢, there is an existential sentence ¢’ such that T*
believes ¢ <+ .

T is model complete

Robinson, 1963
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MSO on omega is the model companion of LTL

Joint work with Silvio Ghilardi (Milan).
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Model companions and languages
Theorem.

The first order theory T* of an algebra for word languages, P(w),
is the model companion of
a theory T of algebras for a fragment of linear temporal logic.

“MSO on w is the model companion of LTL"

Ghilardi & G. JSL 2017

For convenience, we switch from finite words to w-words for this part.
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The theory T*: the generic LTL-algebra

» The Boolean algebra P(w) carries temporal operators:

> Xa:={tcw|t+1€a},
> Fa:={tcw| 3t >t:t €a},
> |:={0}.
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The theory T*: the generic LTL-algebra

» The Boolean algebra P(w) carries temporal operators:
> Xa:={tcw|t+1e€a},
> Fa:={tcw| 3t >t:t €a},
> |:={0}.

» The theory T is the theory, Th(P(w)), of this (single)
structure, in the signature {V,A, L, T, =, X,F, 1} U{=}.

» Exercise. Let ¢ be an (X, F,I)-formula in variables xi, ..., xp.
Foreach 1 <i < n,let X; Cw. Forany t € w, we have

t € " @(X) iff ¢ holds at t in the Kripke model (w, X).
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The theory T: general LTL-algebras

» A linear temporal algebra is a tuple (B, X, F, 1), where
» B=(B,V,A,—, L, T)is a Boolean algebra;
» X is an endomorphism of B;
» lisan atom, XI = 1, and | < Xa when a # L.
» for any a € B, Fa is the least fixed point of x — aV Xx, i.e.,
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» B=(B,V,A,—, L, T)is a Boolean algebra;
» X is an endomorphism of B;
» lisan atom, XI = 1, and | < Xa when a # L.
» for any a € B, Fa is the least fixed point of x — aV Xx, i.e.,

» aVv XFa<Fa, and
> forany b e B, if av Xb < b, then Fa < b.

» T is the theory of the linear temporal algebras.

» Theorem. T* = Th(P(w)) is the model companion of T.

» Co-theories: a non-trivial exercise.
» Model completeness of T*: automata!
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Recall our first example

> A programming problem: given a natural number in binary,

w € {0,1}*, determine if w is congruent 1 modulo 3.

» Solution 1: a (deterministic) automaton A:

0 1
8/\
1 0
Answer ves iff A accepts w.
> Solution 3: a predicate formula ¢ describing A:

HQQHQlaQQ(Qo(fiI‘St) AN Ql(last)/\
Vx[0(x) A Qo(x) = Qo(Sx)] A[1(x) A Qo(x) = Qi(Sx)] A ...).
Answer yes iff w satisfies the formula (.
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An existential description of a word automaton

> Let A=(Q, %, 9, qo, F) be a word automaton over a finite
alphabet ¥, i.e., a function §: Q@ x £ — P(Q), an initial state
go € Q and a subset F C @ of final states.
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» Aword W: w — ¥ is a partition (W, ..., Ws) of w; W; = W1()).

Key Observation. The automaton A accepts a word W: w — &
iff P(w), [wi — Wi] E a(wp, ..., ws), where a is the 3 L-formula:

3qo, - - ., gm( “the g; partition w" & & g ANwj < \/ Xqx
0<i<m ked (i)
0<j<s

& | < do &F (\/I'EF q,') = T)
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Proof outline: T* is model complete

» Any first order formula ¢ in the temporal algebra P(w)

translates to an MSO formula @ in logic on w-words.
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Proof outline: T* is model complete

» Any first order formula ¢ in the temporal algebra P(w)

translates to an MSO formula @ in logic on w-words.
» This MSO formula @ defines a regular language L.
» Build an automaton A for L.

» Describe the automaton A with an existential first order

formula ¢’ in the temporal algebra P(w).

» Conclusion. P(w) believes that any first order formula ¢ is

equivalent to an existential formula '.
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Model companions and languages

Theorem.

The first order theory T* of an algebra for word languages, P(w),
is the model companion of

a theory T of algebras for a linear temporal logic.

Ghilardi & G. JSL 2017
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Model companions and languages

Theorem.

The first order theory T* of an algebra for tree languages, P(2*),
is the model companion of

a theory T of algebras for a fair computation tree logic.

Ghilardi & G. LICS 2016
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Overview

Part 1I: Model completeness in logical algebra

An excursion to trees
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Tree automata

» Suppose (T, R) is a tree with root tp, and let 0: T — X.
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Tree automata

» Suppose (T, R) is a tree with root tp, and let 0: T — X.

» A tree automaton A is a tuple (Q, X, 9, go, ), where
J: QXL —=PP(Q) g€ and Q: Q - w.

» A runof Aon (T,R, ty,0)is a function r: T — Q such that
r(to) = qo and {r(t') | tRt'} € 6(r(t),o(t)) forall t € T.

» The automaton A accepts (T, R, ty, o) if there is a run r such
that, for every infinite path (t;)*_; in T, the number

min{Q(q) | r(t;) = q for infinitely many i}

is even.
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Rabin-Janin-Walukiewicz theorem

Theorem (Rabin 1969, Janin & Walukiewicz 1995)

For any MSO formula &(p), there exists an automaton Ag on the
alphabet ¥ = 2P such that, for any tree (T, R, ty) and colouring
o T —1%,

Tw,00 EP(p) < Ag accepts (T,,0).
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Rabin-Janin-Walukiewicz theorem

Theorem (Rabin 1969, Janin & Walukiewicz 1995)

For any MSO formula &(p), there exists an automaton Ag on the
alphabet ¥ = 2P such that, for any tree (T, R, ty) and colouring
o T —1%,

Tw,00 EP(p) < Ag accepts (T,,0).

Here, T, is the w-unravelling of the tree T.

26 /33



P(T) as an algebra for fair CTL

» Problem: what is the appropriate enrichment of Boolean
algebras to capture the acceptance condition of tree
automata?
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P(T) as an algebra for fair CTL

» Problem: what is the appropriate enrichment of Boolean
algebras to capture the acceptance condition of tree
automata?

» Solution: a version of CTL with local fairness constraints.

» For P,Q C T, define

> EU(P,Q):={t € T | there exists a finite path starting in t
and ending in @, which stays in P until (excl.) the end}.

> AF(P,Q):={t € T | for every infinite path starting in t, if
the path visits T \ Q infinitely often, then some node on the
path is in P}.

» A run r with associated partition g of T will be accepting iff,
for every odd n in the range of €,

AF \/ q,— \/ ql | =T.

Q(q")<n Q(q)=n 27/33



Axiomatizing fair CTL

v

Boolean algebra axioms,

A\

Standard axioms for ¢ and I,

» Fixpoint axioms and rules for EU:
aV (b A OEU(a, b)) < EU(p, ¥
av(bn{c)<c
EU(a,b) <c

» and for EG:
EG(a, b) < a A QEU(b A EG(a, b), a)
c<aNnQEU(bAc,a)
c — EG(a, b)

» AF is an abbrevation, AF(ip, 1) := =EG(—¢p, —)).
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Algebras for fair CTL

» A fair CTL algebra is a tuple (A, 1, O, EG, EU) such that

> Ais a Boolean algebra,
| is a constant symbol,

»

» ¢ is a unary operation,

» EG and EU are binary operations,
| 2

the universal axioms on the previous slide are satisfied.
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Algebras for fair CTL

» A fair CTL algebra is a tuple (A, 1, O, EG, EU) such that
> Ais a Boolean algebra,
» | is a constant symbol,
» ¢ is a unary operation,
» EG and EU are binary operations,
» the universal axioms on the previous slide are satisfied.

> Theorem. A fair CTL formula ¢ is true in all trees iff
evaluates to T under any assignment to a fair CTL algebra.
» The proof uses a non-trivial tableau construction, and mimicks
Walukiewicz' proof of completeness of the modal p calculus.
» There are interesting open questions here.
» Given this result, the tree automata from the
Rabin-Janin-Walukiewicz theorem can be used to prove that
the theory of fair CTL algebras has a model companion.
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Overview

Part 1I: Model completeness in logical algebra

An excursion to Heyting
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So what about Heyting algebras?

» The theory of Heyting algebras also has a model companion,
but for (apparently) very different reasons.
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So what about Heyting algebras?

» The theory of Heyting algebras also has a model companion,
but for (apparently) very different reasons.

» Pitts’ Uniform Interpolation Theorem (1992) shows that
Intuitionistic Propositional Logic (IPL) can interpret monadic
second order quantifiers.

» More precisely, for every Heyting term ¢(X, y), there exist
Heyting terms ¢, (X) and ¢”(X), effectively computable from
©, such that, for any ¢ and 6 not containing g,

HAE o <t < HAE ¢ <,

HAE O < < HAEO<o,.

P For a different, topological proof of Pitts' theorem, see my paper with

Reggio, Top. Appl. 2018.
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The model companion of Heyting algebras

» Ghilardi and Zawadowski, 1995, use Pitts' theorem to give an
effective (infinite) first order axiomatization of the class of

existentially closed Heyting algebras.
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The model companion of Heyting algebras

» Ghilardi and Zawadowski, 1995, use Pitts' theorem to give an
effective (infinite) first order axiomatization of the class of

existentially closed Heyting algebras.

» For a Heyting algebra A, the solvability of a quantifier-free
formula in an extension of A can be expressed using Pitts’

operators (—)¥ and (—),.

> Pitts’ operators thus roughly play the role for Heyting algebras
that automata played in our results on LTL and CTL.

» Can we say more about this analogy?
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Summary of Part Il: Model companions

> Model companions are a logical way to think about
existentially closed structures; the canonical example is
algebraically closed fields.

» Logical algebras, in particular those for linear temporal logic
and computation tree logic, admit model companions.

> Automata are crucially used in the proofs, to eliminate
alternations of quantifiers.

» Heyting algebras have a model companion too, albeit for an

(apparently) different reason.
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» Part |: How algebraic methods can play a role in logic

» Part |I: How model theory interacts with automata theory

» Thank you!
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