Frames and profinite structures

Sam van Gool

Université Paris Cité

Formalization of cohomology theories BIRS, Banff, 22-26 May 2023

Overview

Topological spaces and frames

Coherence, or: how to make it profinite

Ordered spaces

Adding (co)algebraic structure

Overview

Topological spaces and frames

Coherence, or: how to make it profinite

Ordered spaces

Adding (co)algebraic structure

Duality between points and opens

A point x of a topological space X determines a collection of open neighborhoods

$$\epsilon(x) := \{ U \in \mathcal{O}(X) \mid x \in U \} .$$

The function ϵ maps X to its 'double dual'.

Duality between points and opens

A point x of a topological space X determines a collection of open neighborhoods

$$\epsilon(x) := \{ U \in \mathcal{O}(X) \mid x \in U \} .$$

The function ϵ maps X to its 'double dual'.

But what is the 'dual' of a topological space?

Frames

A frame is a complete lattice $(L, \leq, \bigvee, \wedge, 1)$ such that

$$u \wedge \left(\bigvee S\right) = \bigvee_{v \in S} (u \wedge v)$$

for any $u \in L$ and $S \subseteq L$.

Frames

A frame is a complete lattice $(L, \leq, \bigvee, \land, 1)$ such that

$$u \wedge \left(\bigvee S\right) = \bigvee_{v \in S} (u \wedge v)$$

for any $u \in L$ and $S \subseteq L$.

Topological concepts can often be phrased in terms of frames: An element $u \in L$ is compact if for any $S \subseteq L$, $u \leq \bigvee S$ implies $u \leq \bigvee F$ for some finite $F \subseteq S$. L is compact if 1 is compact.

Frames

A frame is a complete lattice $(L, \leq, \bigvee, \wedge, 1)$ such that

$$u \wedge \left(\bigvee S\right) = \bigvee_{v \in S} (u \wedge v)$$

for any $u \in L$ and $S \subseteq L$.

Topological concepts can often be phrased in terms of frames: An element $u \in L$ is compact if for any $S \subseteq L$, $u \leq \bigvee S$ implies $u \leq \bigvee F$ for some finite $F \subseteq S$. L is compact if 1 is compact.

A map $f: X \to Y$ gives a homomorphism $f^{-1}: \mathcal{O}(Y) \to \mathcal{O}(X)$. A homomorphism between frames is a \land , 1, \bigvee preserving function.

Examples of frames

▶ The open sets $\mathcal{O}(X)$ of any topological space X.

$$\bigvee_{i\in I}U_i=\bigcup_{i\in I}U_i$$

Examples of frames

▶ The open sets $\mathcal{O}(X)$ of any topological space X.

$$\bigvee_{i\in I}U_i=\bigcup_{i\in I}U_i$$

▶ The radical ideals RId(R) of any ring R.

$$\bigvee_{i\in I}J_i=\sqrt{\bigoplus_{i\in I}J_i}$$

(Also appears in local cohomology, see for example Mathlib PR #19061)

Examples of frames

▶ The open sets $\mathcal{O}(X)$ of any topological space X.

$$\bigvee_{i\in I}U_i=\bigcup_{i\in I}U_i$$

▶ The radical ideals RId(R) of any ring R.

$$\bigvee_{i\in I}J_i=\sqrt{\bigoplus_{i\in I}J_i}$$

(Also appears in local cohomology, see for example Mathlib PR #19061)

▶ The regular open subsets of a compact Hausdorff space.

$$\bigvee_{i\in I}R_i=\overline{\bigcup_{i\in I}R_i}^\circ$$

The dual space of a frame

A homomorphism

$$x: L \rightarrow \mathbf{2}$$

to the two-element frame $\mathbf{2} = \mathcal{O}(*) = \{0,1\}$ is called a point of L.

(Some people look at Frm^{op} rather than Frm, then call the objects *locales*, and denote 2 by 1.)

The dual space of a frame

A homomorphism

$$x: L \rightarrow \mathbf{2}$$

to the two-element frame $\mathbf{2} = \mathcal{O}(*) = \{0,1\}$ is called a point of L.

(Some people look at Frm^{op} rather than Frm, then call the objects *locales*, and denote 2 by 1.)

The set of points of L, pt L, carries a topology

$$\{\widehat{u}: u \in L\}$$

where

$$\widehat{u} := \{ x \in \operatorname{pt} L \mid x(u) = 1 \} \ .$$

A dual adjunction

We have an adjunction

$$\operatorname{pt} \colon \operatorname{Frm}^{\operatorname{op}} \leftrightarrows \operatorname{Top} \colon \mathcal{O}$$

with unit and co-unit

$$\epsilon_X \colon X \to \operatorname{pt} \mathcal{O} X \qquad \text{ and } \qquad \eta_L \colon L \to \mathcal{O} \operatorname{pt} L .$$

A dual adjunction

We have an adjunction

$$\operatorname{pt} \colon \mathsf{Frm}^{\operatorname{op}} \leftrightarrows \mathsf{Top} \colon \mathcal{O}$$

with unit and co-unit

$$\epsilon_X \colon X \to \operatorname{pt} \mathcal{O} X$$
 and $\eta_L \colon L \to \mathcal{O} \operatorname{pt} L$.

The fixed points on the left are the spatial frames and on the right the sober spaces.

A dual adjunction

We have an adjunction

$$\operatorname{pt} \colon \mathsf{Frm}^{\operatorname{op}} \leftrightarrows \mathsf{Top} \colon \mathcal{O}$$

with unit and co-unit

$$\epsilon_X \colon X \to \operatorname{pt} \mathcal{O} X$$
 and $\eta_L \colon L \to \mathcal{O} \operatorname{pt} L$.

The fixed points on the left are the spatial frames and on the right the sober spaces.

Sober: T_0 and every irreducible closed set has a generic point.

Fact (in Mathlib): Hausdorff \Rightarrow sober.

▶ Points of $\mathcal{O}X$ correspond to irreducible closed sets of X:

$$x \colon \mathcal{O}X \to \mathbf{2} \quad \longleftrightarrow \quad X \setminus \left(\bigcup \{U \mid x(U) = 0\}\right).$$

▶ Points of $\mathcal{O}X$ correspond to irreducible closed sets of X:

$$x \colon \mathcal{O}X \to \mathbf{2} \quad \longleftrightarrow \quad X \setminus \left(\bigcup \{U \mid x(U) = 0\}\right).$$

▶ Points of RId*R* correspond to prime ideals of *R*:

$$x : \operatorname{RId}R \to \mathbf{2} \longleftrightarrow \bigcup \{J \in \operatorname{RId}R \mid x(J) = 1\}$$
.

▶ Points of $\mathcal{O}X$ correspond to irreducible closed sets of X:

$$x \colon \mathcal{O}X \to \mathbf{2} \quad \longleftrightarrow \quad X \setminus \left(\bigcup \{U \mid x(U) = 0\}\right).$$

▶ Points of RId*R* correspond to prime ideals of *R*:

$$x : \operatorname{RId}R \to \mathbf{2} \longleftrightarrow \bigcup \{J \in \operatorname{RId}R \mid x(J) = 1\}$$
.

ightharpoonup Points of \mathcal{ROX} are ...

▶ Points of $\mathcal{O}X$ correspond to irreducible closed sets of X:

$$x \colon \mathcal{O}X \to \mathbf{2} \quad \longleftrightarrow \quad X \setminus \left(\bigcup \{U \mid x(U) = 0\}\right).$$

▶ Points of RId*R* correspond to prime ideals of *R*:

$$x : \operatorname{RId}R \to \mathbf{2} \longleftrightarrow \bigcup \{J \in \operatorname{RId}R \mid x(J) = 1\}.$$

▶ Points of \mathcal{ROX} are ... there may not be any.

Overview

Topological spaces and frames

Coherence, or: how to make it profinite

Ordered spaces

Adding (co)algebraic structure

Profinite sets

For a set S, write DS for the discrete topological space on S.

A profinite set is any topological space that is a cofiltered limit of objects *DF* with *F* a finite set.

Profinite sets

For a set S, write DS for the discrete topological space on S.

A profinite set is any topological space that is a cofiltered limit of objects *DF* with *F* a finite set.

Proposition

A topological space X is a profinite set if, and only if, X is compact and totally separated, that is, for any $x, y \in X$,

if $x \neq y$ then there is a clopen $K \subseteq X$ such that $x \in K$ and $y \notin K$.

The category of Profinite Types

We construct the category of profinite topological spaces, often called profinite sets -- perhaps they could be called profinite types in Lean.

The type of profinite topological spaces is called **Profinite**. It has a category instance and is a fully faithful subcategory of **TopCat**. The fully faithful functor is called **Profinite**. to **Top**.

Implementation notes

A profinite type is defined to be a topological space which is compact, Hausdorff and totally disconnected.

TODO

- 0. Link to category of projective limits of finite discrete sets.
- 1. finite coproducts
- 2. Clausen/Scholze topology on the category Profinite.

Tags

profinite

```
structure Profinite
:
Type (u_1+1)

The underlying compact Hausdorff space of a profinite space.

toCompHaus: CompHaus

A profinite space is totally disconnected.

IsTotallyDisconnected: TotallyDisconnectedSpace ↑toCompHaus.toTop
```

ink source

mihiememanon nores

A profinite type is defined to be a topological space which is con

TODO

- 0. Link to category of projective limits of finite discrete sets.
- 1 finite conroducts

Formalize a proof that the following categories are equivalent:

- 1. Compact totally separated topological spaces
- 2. Cofiltered limits in **Top** of objects *DF* with *F* finite
- 3. Finite-limit-preserving functors **FinSet** → **Set**
- 4. The Pro-completion of **FinSet**

Formalize a proof that the following categories are equivalent:

- 1. Compact totally separated topological spaces
- 2. Cofiltered limits in **Top** of objects *DF* with *F* finite
- 3. Finite-limit-preserving functors **FinSet** → **Set**
- 4. The Pro-completion of **FinSet**

Roadmap.

1 ⇒ 2 is essentially done: state it & cite the results in Mathlib.Topology.Category.Profinite.cofiltered_limit andas_limit.

Formalize a proof that the following categories are equivalent:

- 1. Compact totally separated topological spaces
- 2. Cofiltered limits in **Top** of objects *DF* with *F* finite
- 3. Finite-limit-preserving functors **FinSet** → **Set**
- 4. The Pro-completion of **FinSet**

Roadmap.

- $1 \iff 2$ is essentially done: state it & cite the results in Mathlib.Topology.Category.Profinite.cofiltered_limit andas_limit.
- $1 \iff$ 4 is essentially in lean-liquid and lean-solid.

Formalize a proof that the following categories are equivalent:

- 1. Compact totally separated topological spaces
- 2. Cofiltered limits in **Top** of objects *DF* with *F* finite
- 3. Finite-limit-preserving functors **FinSet** → **Set**
- 4. The Pro-completion of **FinSet**

Roadmap.

- 1 ⇒ 2 is essentially done: state it & cite the results in Mathlib.Topology.Category.Profinite.cofiltered_limit andas_limit.
- $1 \iff$ 4 is essentially in lean-liquid and lean-solid.
- $3 \iff 4 \text{ is 'just category theory'} \text{ (famous last words)}.$

Stone duality for Boolean algebras

Theorem (Stone 1937)

$$\mathsf{BA}^\mathrm{op} \simeq \mathsf{Pro}\,\mathsf{FinSet}$$
 .

Proof. Given the First Mile-Stone™, this is easy:

- ▶ FinBA $^{op} \simeq$ FinSet,
- ▶ Ind(FinBA) \simeq BA,
- ▶ Ind(C)^{op} \simeq Pro(C^{op}).

Stone duality for Boolean algebras

Theorem (Stone 1937)

$$\mathsf{BA}^\mathrm{op} \simeq \mathsf{Pro}\,\mathsf{FinSet}$$
 .

Proof. Given the First Mile-Stone[™], this is easy:

- ▶ FinBA op \simeq FinSet,
- ▶ Ind(FinBA) \simeq BA,
- ▶ $Ind(C)^{op} \simeq Pro(C^{op})$.

(Not Stone's original proof. No ultrafilters, at least not explicitly.)

Stone duality for distributive lattices

Theorem (Stone 1936)

$$\mathsf{DL}^{\mathrm{op}} \simeq \mathsf{Pro}\,\mathsf{FinT}_0$$
.

Proof. Given the Second Mile-Stone™, this is easy:

- ▶ $FinDL^{op} \simeq FinT_0$,
- ▶ Ind(FinDL) \simeq DL.
- ▶ Ind(C) $^{op} \simeq Pro(C^{op})$.

Stone duality for distributive lattices

Theorem (Stone 1936)

$$\mathsf{DL}^{\mathrm{op}} \simeq \mathsf{Pro}\,\mathsf{FinT}_0$$
.

Proof. Given the Second Mile-Stone[™], this is easy:

- ▶ $FinDL^{op} \simeq FinT_0$,
- ▶ Ind(FinDL) \simeq DL.
- ▶ $Ind(C)^{op} \simeq Pro(C^{op})$.

What is **Pro FinT** $_0$?

Spectrality and Coherence

Proposition

A topological space X is a projective limit of finite T_0 spaces if, and only if, it is spectral, that is, compact, sober, and has a basis of compact-open sets which is closed under finite intersections.

Spectrality and Coherence

Proposition

A topological space X is a projective limit of finite T_0 spaces if, and only if, it is spectral, that is, compact, sober, and has a basis of compact-open sets which is closed under finite intersections.

Proposition

A space X is spectral if, and only if, the frame $\mathcal{O}(X)$ is coherent, that is, its compact elements are a \bigvee -dense sublattice.

Examples of spectral spaces

▶ Any finite T_0 -space.

- ightharpoonup Any finite T_0 -space.
- ► The Zariski spectrum of any ring *R*. The associated distributive lattice consists of the finitely generated radical ideals of *R*.

- ightharpoonup Any finite T_0 -space.
- ► The Zariski spectrum of any ring *R*. The associated distributive lattice consists of the finitely generated radical ideals of *R*.

Theorem (Hochster 1969)

Every spectral space is the Zariski spectrum of some ring.

- ightharpoonup Any finite T_0 -space.
- ► The Zariski spectrum of any ring *R*. The associated distributive lattice consists of the finitely generated radical ideals of *R*.

Theorem (Hochster 1969)

Every spectral space is the Zariski spectrum of some ring.

Proof. Interesting.

- ightharpoonup Any finite T_0 -space.
- ► The Zariski spectrum of any ring *R*. The associated distributive lattice consists of the finitely generated radical ideals of *R*.

Theorem (Hochster 1969)

Every spectral space is the Zariski spectrum of some ring.

Proof. Interesting.

Proposition (A more feasible sub-goal)

Every finite distributive lattice is the lattice of finitely generated radical ideals of some ring R.

The category of spectral spaces

A spectral space X is a projective limit of finite T_0 -spaces.

However: not every continuous function $X \to Y$ between spectral spaces factors through the limit diagram!

The category of spectral spaces

A spectral space X is a projective limit of finite T_0 -spaces.

However: not every continuous function $X \to Y$ between spectral spaces factors through the limit diagram!

A function $f: X \to Y$ between spectral spaces is called spectral if $f^{-1}(K)$ is compact-open for any compact-open set $K \subseteq Y$.

Taking stock: Stone's dualities

Overview

Topological spaces and frames

Coherence, or: how to make it profinite

Ordered spaces

Adding (co)algebraic structure

For a topological space X and $x, y \in X$, the specialization order is

$$x \rightsquigarrow y \iff y \in \operatorname{cl}(\{x\})$$
.

For a topological space X and $x, y \in X$, the specialization order is

$$x \rightsquigarrow y \iff y \in \operatorname{cl}(\{x\})$$
.

Any spectral topology σ on a set X has an inverse topology σ^{∂} , which is also spectral, and has the inverse specialization order.

For a topological space X and $x, y \in X$, the specialization order is

$$x \rightsquigarrow y \iff y \in \operatorname{cl}(\{x\})$$
.

Any spectral topology σ on a set X has an inverse topology σ^{∂} , which is also spectral, and has the inverse specialization order. The patch topology σ^p is the join of σ and σ^{∂} .

For a topological space X and $x, y \in X$, the specialization order is

$$x \rightsquigarrow y \iff y \in \operatorname{cl}(\{x\})$$
.

Any spectral topology σ on a set X has an inverse topology σ^{∂} , which is also spectral, and has the inverse specialization order. The patch topology σ^p is the join of σ and σ^{∂} .

Proposition

The partially ordered topological space (X, σ^p, \leadsto) is compact and totally order-separated: for any $x, y \in X$, if $x \nleq y$, then there is a clopen \leadsto -up-set $K \subseteq X$ such that $x \in K$ and $y \notin K$.

Such a structure is called a Priestley space.

Spectral and Priestley

Let (X, π, \leq) a Priestley space. The topology of open \leq -up-sets is spectral, with inverse the topology of open \leq -down-sets.

Spectral and Priestley

Let (X, π, \leq) a Priestley space. The topology of open \leq -up-sets is spectral, with inverse the topology of open \leq -down-sets.

Proposition

 $Spec_s$ is isomorphic to the category of Priestley spaces with continuous monotone maps.

Spectral and Priestley

Let (X, π, \leq) a Priestley space. The topology of open \leq -up-sets is spectral, with inverse the topology of open \leq -down-sets.

Proposition

 $Spec_s$ is isomorphic to the category of Priestley spaces with continuous monotone maps.

The Hausdorff spectral spaces (= profinite sets) correspond to the Priestley spaces with trivial specialization order.

Profinite posets

As with profinite sets, there is a fully faithful functor

 $D : \mathsf{FinPoset} \to \mathsf{Priestley}$

which maps a finite poset (P, \leq) to $(P, \tau_{\text{discrete}}, \leq)$.

Proposition

The category of Priestley spaces is equivalent to the Pro-completion of **FinPoset**.

Overview

Topological spaces and frames

Coherence, or: how to make it profinite

Ordered spaces

Adding (co)algebraic structure

Example

Consider $\widehat{\mathbb{Z}} = \varprojlim_n \mathbb{Z}/n\mathbb{Z}$, the free profinite group on one generator.

Example

Consider $\widehat{\mathbb{Z}} = \varprojlim_n \mathbb{Z}/n\mathbb{Z}$, the free profinite group on one generator.

Proposition

The profinite set underlying $\widehat{\mathbb{Z}}$ is spec A, where $A \leq \mathbf{2}^{\mathbb{Z}}$ is the Boolean algebra generated by arithmetic progressions. The group structure of $\widehat{\mathbb{Z}}$ is dual to the shift map on A.

Example

Consider $\widehat{\mathbb{Z}} = \varprojlim_n \mathbb{Z}/n\mathbb{Z}$, the free profinite group on one generator.

Proposition

The profinite set underlying $\widehat{\mathbb{Z}}$ is spec A, where $A \leq \mathbf{2}^{\mathbb{Z}}$ is the Boolean algebra generated by arithmetic progressions. The group structure of $\widehat{\mathbb{Z}}$ is dual to the shift map on A.

Useful for proving the Skolem theorem: the zero set of a linear recurrence (in \mathbb{Z}) is a finite union of arithmetic progressions, up to a finite error. (A nice formalization project?)

A connection to recognizable sets

Showing that a subset $S \subseteq \{0,1\}^*$ is 'hard to compute' is one of the major research questions in the theory of computation.

A connection to recognizable sets

Showing that a subset $S \subseteq \{0,1\}^*$ is 'hard to compute' is one of the major research questions in the theory of computation.

Free profinite monoids naturally appear here:

Example

The free profinite monoid on $\{0,1\}$ is the spectrum of the Boolean algebra of regular languages (extended with coalgebraic structure).

A connection to recognizable sets

Showing that a subset $S \subseteq \{0,1\}^*$ is 'hard to compute' is one of the major research questions in the theory of computation.

Free profinite monoids naturally appear here:

Example

The free profinite monoid on $\{0,1\}$ is the spectrum of the Boolean algebra of regular languages (extended with coalgebraic structure).

More generally:

Theorem (Gehrke)

The profinite completion of an algebraic structure A is the extended spectrum of the Boolean algebra of recognizable sets in A.

Simply typed λ -terms are themselves algebraic objects: arrows in a cartesian closed category. (analogous to: one can implement Lean in Lean, baby version)

Simply typed λ -terms are themselves algebraic objects: arrows in a cartesian closed category. (analogous to: one can implement Lean in Lean, baby version)

Recent joint work with Melliès and Moreau (2023):

Definition

A profinite λ -term is a point of the algebra of λ -recognizable sets.

Simply typed λ -terms are themselves algebraic objects: arrows in a cartesian closed category. (analogous to: one can implement Lean in Lean, baby version)

Recent joint work with Melliès and Moreau (2023):

Definition

A profinite λ -term is a point of the algebra of λ -recognizable sets.

Proposition

The free profinite monoid on a finite set A is realized as the set of profinite λ -terms of type $(t \to t)^A \to (t \to t)$.

Simply typed λ -terms are themselves algebraic objects: arrows in a cartesian closed category. (analogous to: one can implement Lean in Lean, baby version)

Recent joint work with Melliès and Moreau (2023):

Definition

A profinite λ -term is a point of the algebra of λ -recognizable sets.

Proposition

The free profinite monoid on a finite set A is realized as the set of profinite λ -terms of type $(t \to t)^A \to (t \to t)$.

(Mathematical) WIP: extend the usual profinite monoid methods to this setting.

Summary

- Stone duality: mostly linking up some existing parts of the library, no big roadblocks expected.
- Profinite posets: some more work but doable.
- Potential new application domains (in addition to Condensed Math): Hochster, Skolem.
- Adding (co)algebraic structure: a longer-term project.

Frames and profinite structures

Sam van Gool

Université Paris Cité

Formalization of cohomology theories BIRS, Banff, 22-26 May 2023