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Abstract

In this paper we introduce a new setting, based on partial algebras, for studying con-

structions of finitely generated free algebras. We give sufficient conditions under which

the finitely generated free algebras for a variety V may be described as the colimit of a

chain of finite partial algebras obtained by repeated application of a functor. In particular,

our method encompasses the construction of finitely generated free algebras for varieties of

algebras for a functor as in [2], Heyting algebras as in [1] and S4 algebras as in [8].

1 Introduction

In the algebraic study of a logic L, one assigns a class of algebras VL to the logic and uses

algebraic methods to obtain properties of this class. The results of this algebraic study can be

translated back to properties of L. Algebraic methods may be applied to study issues such

as term complexity, decidability of logical equivalence, interpolation and normal forms, i.e.,

problems in which one considers formulas whose variables are drawn from a finite set. In

particular, if the class of algebras VL contains (finitely generated) free algebras, a thorough

understanding of these can yield powerful results about the logic L.

In [2] N. Bezhanishvilli and Kurz study classes of algebras VL associated with a logic L

which is axiomatized by equations which are rank 1 for an operation f 1. In this case, the

algebras for the logic can be represented as algebras for a functor FL on the category of
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1An equation is of rank 1 for an operation f if every variable occurs under the scope of exactly one occurrence
of f .
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underlying algebras without the operation f . The authors show that this functor FL enables

a constructive description of the free VL algebras.

As many interesting logics are not axiomatized by rank 1 axioms, one would want to extend

these existing techniques. However, as is shown in [11], non-rank 1 logics cannot be rep-

resented as algebras for a functor and therefore we cannot use the standard construction of

free algebras in a straightforward way.

Ghilardi pioneered the construction of free algebras for non-rank 1 varieties in [6]. Here

he describes a method to incrementally build finitely generated free Heyting algebras by

constructing a chain of distributive lattices, where, in each step, implications are freely

added to the lattice, while keeping a specified set of implications which are already defined

in the previous step. In a subsequent paper, Ghilardi extended these techniques to modal

logic [7], and used his algebraic and duality theoretic methods to derive normal forms for

modal logics, notably S4.

Recently, this line of research has been picked up again. In [1] N. Bezhanishvili and Gehrke

have re-analysed Ghilardi’s incremental construction and have described it by repeated ap-

plication of a functor on the category of algebras for the logic, based on the ideas of the

coalgebraic approach to rank 1 logics and Birkhoff duality for finite distributive lattices.

Shortly after, Ghilardi [8] gave a new construction of the free S4 algebra in the same spirit.

However, the methods in [1] and [8] rely on specific properties of Heyting algebras and S4

algebras respectively, and they do not directly apply in a general setting. Studying this work

has led us to the insight that partial algebras are the natural structures to consider when

building free algebras step by step. This insight has enabled us to describe a general func-

torial method for constructing free algebras which is applicable outside the setting of pure

rank 1 logics.

1.1 Outline

We will now outline our method in a bit more detail. Although our method is applicable to

more general logics, our focus in this paper (mainly for the sake of readability) is on modal

logics, i.e., Boolean logics with one additional unary ∨-preserving connective ^, and their

associated algebras: modal algebras. The notion of rank of a modal term is central in this

paper and therefore we give a precise definition.

Definition 1.1. Let P be a set of variables. We denote the set of Boolean terms in P by

TBA(P). The sets Tn
MA(P) of modal terms in P of rank at most n are defined inductively
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as follows.

T0
MA(P) := TBA(P),

Tn+1
MA(P) := TBA(P ∪ {^t : t ∈ Tn

MA(P)}).

Recall that an equation is an expression “s ≈ t”, where s and t are modal terms, and a

modal algebra (B,^B) is said to satisfy an equation if the interpretations of the terms s

and t in (B,^B) are equal, under all interpretations of the variables. Similarly, a quasi-

equation is an expression of the form “(s1 ≈ t1 & · · · & sm ≈ tm) → (s ≈ t)”, and we

can express when a modal algebra satisfies a quasi-equation in the obvious way. Given a

set of (quasi-)equations E, the (quasi-)equational class VE is the class of modal algebras

satisfying all (quasi-)equations in E. A classical theorem of Birkhoff says that, for every

(quasi-)equational class V of modal algebras and set of variables P, the free V algebra over

P, FV(P), exists.

The notion of rank allows us to understand this free algebra in a layered manner as follows.

For each n ≥ 0, the (equivalence classes of) terms of rank at most n form a Boolean subalge-

bra Bn of FV(P). Furthermore, for each n, the operator ^ on FV(P) yields a join preserving

map ^n+1 : Bn → Bn+1. Hence, we have a chain of Boolean algebras

B0 B1 B2 · · ·

^1 ^2 ^3

with embeddings and join-preserving maps between them. The Boolean reduct of FV(P)

is the colimit of the chain of Boolean algebras and embeddings and the operator ^ is the

unique extension of the functions ^n to a function on FV(P).

The new perspective on this chain that we propose in this paper is the following. Instead of

considering ^n+1 as a map Bn → Bn+1, we propose to view it as a partial operator on Bn+1

(which is only defined on elements in the subalgebra Bn). This leads to the notion of partial

modal algebra (cf. Definition 2.1) and the above chain may be described as a chain in the

category of partial modal algebras

(B1,^1)� (B2,^2)� (B3,^3)� · · · ,

We will call this chain the approximating chain of FV(P).

The crucial point of our method is that we can prove that, in a fairly general setting, it is

possible to obtain the approximating chain of FV(P) by a uniform construction, using a

notion of free image-total functor on a given category pV of partial algebras, as we describe

in Section 2. The total algebras in pV form a full subcategory V of pV. We give conditions

on the functor so that repeated application of it yields the approximating chain of the free

total V algebra over a given finite pV algebra. To obtain the approximating chain of the
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free V algebra over a given set, it then remains to describe the first pV algebra of the chain,

which is often easy to do.

In Section 3 we show that a set of quasi-equations E of rank at most 1 naturally gives rise

to a free image-total functor FE on the subcategory pVE of partial algebras satisfying the

quasi-equations in E.2

To determine, for a set of quasi-equations E, whether FE has the required properties for

the results of Section 2 to apply, duality theory is a useful tool. Therefore we develop a

Stone-type duality for partial modal algebras in Section 4.

To summarize, our main theoretical contributions to understanding the approximating chain

are the following.

• Theorem 2.11. We show that the categorical content of the approximating-chain con-

struction is captured by a free image-total functor on a category of partial algebras.

• Lemma 3.12. We show that any logic defined by a set of quasi-equations of rank at

most 1 yields a free image-total functor.

• Theorem 3.15. We give a sufficient condition for the free image-total functor for a

logic to yield the free total algebra in the colimit.

• Section 4. We describe a duality between partial modal algebras and q-frames, and

show how quotients dually correspond to generated subframes under this duality.

The rest of the paper discusses important examples which are applications of these general

results:

• In Section 5 we focus on the variety of S4 algebras. Using the developed duality

theory, we will be able to give a concrete (dual) description of the functor FS4. This

description then enables us to show that it satisfies all the conditions we need for the

general result to apply. We end Section 5 by showing how the recent work of Ghilardi

[8] relates to our work.

• Our general construction also applies to the class of modal algebras satisfying T, KB
and K5 respectively. In Section 6 we briefly discuss these results.

• In [2], Kurz and Bezhanishvili constructed the free algebras for classes VE where

E consists of pure rank 1 equations. They do so by describing a chain of Boolean

algebras whose colimit is the free VE algebra.3 Our method encompasses this con-

struction, as we will outline in Section 7.

We conclude the paper by mentioning some future research questions in Section 8.

2Any set of quasi-equations may be rewritten to a logically equivalent set of quasi-equations of rank at most 1
using flattening, see Remark 3.1.

3To be more precise, the colimit is only the Boolean reduct of the free algebra, but it possesses a canonical
modal structure.
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2 Chains of partial modal algebras

We will introduce partial modal algebras, in our opinion the most natural setting for building

the free algebra for a variety of modal algebras. There exists an extensive literature on partial

algebras, see for example [4] and Chapter 2 of [10]. For our exposition here, we choose to

introduce only the concepts we need, in order to make the paper self-contained. Many

of the general results in this section could have been obtained from the existing literature

on partial algebras, with the exception of the definition of free image-total functor and the

theorem following it, which is original, as far as we know.

Definition 2.1. A partial modal algebra (pMA) is a pair (B,^B), where B is a Boolean

algebra, and ^B : B ⇀ B is a partial function which is defined on a Boolean subalgebra

dom(^B) of B, such that ^B⊥ = ⊥, and, for all a, a′ ∈ dom(^B), ^B(a ∨ a′) = ^Ba ∨ ^Ba′.

A partial modal homomorphism from a pMA (B,^B) to a pMA (C,^C) is a Boolean

algebra homomorphism f : B → C such that f [dom(^B)] ⊆ dom(^C), and for all a ∈

dom(^B), f (^Ba) = ^C f (a).

We denote the category of partial modal algebras with partial modal homomorphisms by

pMA, and the full subcategory of partial modal algebras based on finite Boolean algebras

by pMAω.

Note that the category MA of modal algebras is isomorphic to the full subcategory of pMA,

consisting of those objects (B,^B) with dom(^B) = B, which we call total modal algebras.

Remark 2.2. 1. A more categorically motivated way to describe the category of partial

modal algebras is that it is the category of diagrams of the form

A B
i

^B

where A and B are Boolean algebras, i is an embedding, and ^B : A → B is a (⊥,∨)-

preserving function. A partial modal homomorphism from (B, A, i,^B) to (B′, A′, i′,^B′)

can then be described as a pair of BA homomorphisms ( f , f ′) making the following

diagrams commute:

A B

A′ B′

i

^B

i′

^B′

f ′ f

Put into words, this simply means that partial modal algebras can also be described
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as ‘Boolean algebras with a distinguished subalgebra and a modal operator from the

subalgebra to the full algebra’.

2. Building on the previous remark, the invertible morphisms in the category pMA may

be described as follows: a partial modal homomorphism f : (B,^B) → (C,^C) is

a pMA isomorphism iff both functions f : B → C and f |dom(^B) : dom(^B) →

dom(^C) are bijective.

3. The category pMA has two ‘forgetful’ functors to BA. First of all, we have the ob-

vious U : pMA → BA which sends (B,^B) to B, and a pMA morphism f to the

same function between the underlying Boolean algebras. Secondly, we have a functor

Ud : pMA → BA which sends (B,^B) to the Boolean algebra dom(^B), and a pMA

morphism f : (B,^B) → (C,^C) to its restriction f |dom(^B) : dom(^B) → dom(^C).

Note that f restricts correctly, by the definition of pMA morphisms. Also note that a

partial modal algebra (B,^B) is total precisely when U(B,^B) = Ud(B,^B).

In Proposition 3.10, we will show that Ud has a left adjoint, constructing a ‘free partial

modal algebra’ over a given Boolean algebra.

4. One could extend the concept of partial modal algebra to more general classes of

Boolean algebras with additional operators, and we will define ‘partial algebras for a

functor’ in Section 7. We choose to focus on partial modal algebras for the larger part

of this paper, since our applications in this paper lie in that field, but we notice that

the material in this section is more widely applicable in other varieties which have a

locally finite reduct.

As in usual universal algebra, we have an equational and quasi-equational theory of partial

algebras.

Definition 2.3. Let {si, ti | 1 ≤ i ≤ m} ∪ {s, t} be a collection of modal terms of rank at

most 1 in variables {p1, . . . , pk, q1, . . . , ql}, such that the variables p1, . . . , pk are exactly the

variables occurring in the scope of ^ in any of the terms {si, ti | 1 ≤ i ≤ m} ∪ {s, t}.

We say a partial modal algebra (B,^B) satisfies the quasi-equation (s1 ≈ t1 & · · · & sm ≈

tm)→ (s ≈ t) iff the quasi-equation is true for all assignments of the variables pi by elements

ai ∈ dom(^B) and of the variables q j by b j ∈ B.

Let E be a set of quasi-equations of rank at most 1. We write pVE for the full subcategory

of pMA consisting of the partial modal algebras (B,^B) which satisfy all equations in E.

Note that we restrict ourselves to quasi-equations of rank at most 1, as allowing terms of

higher rank would require multiple applications of ^ to some of the variables, while there

is no guarantee that if a ∈ dom(^), then ^a ∈ dom(^). As remarked in the Introduction,

this is no real restriction, because any set of quasi-equations may be rewritten to a logically

equivalent set of quasi-equations of rank at most 1 (see also Remark 3.1).
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We now state some results regarding the preservation of terms and (quasi-)equations in

homomorphic images, subalgebras, and colimits of partial algebras. The proofs of these

results are similar to their counterparts in universal algebra, so we will often omit them.

We say a pMA morphism h is an embedding if h is injective, and we say it is a quotient if

it is surjective and h[dom(^B)] = dom(^C).

Lemma 2.4 (Preservation of terms and equations of rank ≤ 1). Let h : (B,^B) → (C,^C)

be a pMA morphism and let s(p1, . . . , pk, q1, . . . , ql), t(p1, . . . , pk, q1, . . . , ql) be modal terms

of rank at most 1 such that no qi is in the scope of ^ in s or t. Then the following properties

hold.

1. For all a1, . . . , ak ∈ dom(^B), b1, . . . , bl ∈ B:

h(sB(a1, . . . , ak, b1, . . . , bl)) = sC(h(a1), . . . , h(ak), h(b1), . . . , h(bl)).

2. If h is a quotient and (B,^B) satisfies s ≈ t, then (C,^C) satisfies s ≈ t.

3. If h is an embedding and (C,^C) satisfies s ≈ t, then (B,^B) satisfies s ≈ t.

We will now show that we can take colimits (in algebraic terms, direct limits) of certain

chains of partial modal algebras, and that the quasi-equations which hold throughout the

chain still hold in the colimit. Let us first recall the definition of colimit in this setting.

Definition 2.5. Let (αn : (Bn,^n) → (Bn+1,^n+1))n∈N be a chain of partial modal alge-

bras with pMA morphisms between them. We say that a partial modal algebra (Bω,^Bω),

equipped with pMA morphisms kn : (Bn,^n)→ (Bω,^Bω) for every n, is the direct limit or

colimit of this chain if, for every co-cone of pMA morphisms ( fn : (Bn,^n)→ (C,^C))n∈N,

there exists a unique pMA morphism f̄ : (Bω,^Bω) → (C,^C) such that f̄ ◦ kn = fn for all

n.

We now specialize to a situation where we can show that the colimit exists, simply by lifting

the colimit from Boolean algebras to partial modal algebras. The extra condition we need

for this to work is that the maps αn in the chain are image-total, in the sense of the following

definition and theorem. In particular, we will see below that the approximating chain for the

free algebra is of this form.

Definition 2.6. A pMA morphism f : (B,^B)→ (C,^C) is image-total if f [B] ⊆ dom(^C).

Theorem 2.7 (Colimits of image-total chains). Let (αn : (Bn,^n) → (Bn+1,^n+1))n∈N be a

chain of partial modal algebras and image-total pMA morphisms between them.

Let (kn : Bn → Bω)n∈N be the colimit of the underlying chain of Boolean algebras. Then the

following hold.
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1. There exists a unique total operation ^Bω : Bω → Bω such that each of the functions

kn preserves ^, i.e., for all a ∈ dom(^n), kn(^na) = ^Bωkn(a).

2. If s ≈ t is an equation of rank at most 1 which holds in Bn for each n, then s ≈ t holds

in Bω.

3. If all the maps αn are embeddings, then item (2) holds for all quasi-equations of rank

at most 1.

4. The algebra (Bω,^Bω) is a modal algebra, and it is the pMA-colimit of the chain.

Remark 2.8. By a theorem of Manes [12], the colimit in BA is given by lifting the colimit

in Set. Concretely, the underlying set of Bω can be described by taking the disjoint union⊔
n∈N Bn, and quotienting it by the equivalence relation ∼Bω , which is defined to be the

smallest equivalence relation containing all pairs 〈bn, αn(bn)〉, for n ∈ N, bn ∈ Bn. The

Boolean algebra operations on B are then well-defined, and the nth ‘leg’ of the colimiting

cone, kn, is the inclusion of Bn into
⊔

n∈N Bn, followed by taking the class under ∼Bω .

Proof. 1. Note that the functions kn+1 ◦ ^n+1 ◦ αn : Bn → Bω form a cone under the

diagram in Set of which (kn : Bn → Bω)n∈N is the colimit:

kn+2 ◦ ^
n+2 ◦ αn+1 ◦ αn = kn+2 ◦ αn+2 ◦ ^n+1 ◦ αn = kn+1 ◦ ^n+1 ◦ αn,

where we have used in the first equality that αn+1 is an image-total partial modal

homomorphism, and in the second equality that the kn form a co-cone.

By the universal property of the colimit in Set, there exists a (unique) function, which

we will denote by^Bω , from Bω → Bω, such that, for all n, ^Bω ◦kn = kn+1◦^n+1◦αn.

We thus get a total operation ^Bω on Bω. To see that the maps kn : (Bn,^n) →

(Bω,^Bω) indeed preserve ^, note that, for b ∈ dom(^n), we have

^Bωknb = kn+1^n+1αnb = kn+1αn^nb = kn^nb.

2. This follows from Lemma 2.4.1, the definition of (Bω,^Bω), and the assumption that

each αn is image-total:

Let b1, . . . , bm ∈ Bω be an arbitrary assignment of the variables occurring in s ≈

t. Pick n sufficiently large such that {b1, . . . , bm} ⊆ kn[Bn] = kn+1[im(αn)]. Pick

a1, . . . , am ∈ im(αn) ⊆ dom(^n+1) such that bi = kn+1(ai), for i = 1, . . . ,m. Then

sBn+1(a1, . . . , am) = tBn+1(a1, . . . , am) by assumption, and it follows from the definition

of ^Bω and Lemma 2.4.1 that sBω(b1, . . . , bm) = tBω(b1, . . . , bm).

3. The proof is similar, using that all kn are then also embeddings, so that Lemma 2.4.3

applies.
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4. The fact that (Bω,^Bω) is a modal algebra follows from part (2), and it is straightfor-

ward to check that it satisfies the universal property for the colimit, using the definition

of ^Bω . �

We are now ready to present our new result on obtaining a free algebra by repeated applica-

tion of a functor, in the setting of partial modal algebras.

Definition 2.9. Let pV be a full subcategory of pMA, and write V for the full subcategory

of pV whose objects are the total algebras in pV.

Let B0 ∈ pV. We say an object B∗ of V, together with a pMA morphism k0 : B0 � B∗, is the
free total V algebra over B0 if, for every C ∈ V, and for every pMA morphism f0 : B0 → C,

there exists a unique modal algebra morphism f̄ : B∗ → C such that f̄ ◦ k0 = f0.

We now state conditions on a functor F : pV→ pV so that, given a partial algebra B0 ∈ pV,

the free total V algebra B∗ over B0 can be built as the colimit of a chain which is obtained

by repeatedly applying the functor F.

First of all, F must be a free image-total functor, in the sense of the following definition.

Definition 2.10. Let pV be a full subcategory of pMA. We say a pair (F, η), where F is a

functor on pV, and η : 1pV → F is a natural transformation, is a free image-total pair if

1. for all B ∈ pV, ηB is image-total,

2. if h : B → C is an image-total morphism in pV, then there exists a unique pMA

morphism h̄ : FB→ C such that h̄ ◦ ηB = h.

B FB

C

h
h̄

ηB

A functor F on pV is called a free image-total functor if there exists an η such that (F, η)

is a free image-total pair.

As mentioned in the introduction, in our intended applications, the objects of the category

pV will form a class of partial modal algebras axiomatized by a set E of quasi-equations of

rank at most 1, and we will be able to define a free image-total functor FE on pV.

Given an image-total pair (η, F) and an object B0 ∈ pV, we now inductively define a chain

in pV by setting, for n ∈ N,

Bn+1 := FBn.

This yields:
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(B0,^0) (B1,^1) · · · (Bn,^n) (Bn+1,^n+1) · · ·
ηB0 ηB1 ηBn−1 ηBn ηBn+1

in which each map ηBn is image-total, by assumption. We may now apply Theorem 2.7 and

take the pMA-colimit Bω of this chain diagram, with pMA morphisms kn : Bn → Bω for

each n.

In order to conclude that Bω is the free total V algebra over B0, we would need to show two

things:

1. Bω ∈ V, and

2. Bω has the required universal property.

However, (1) will not be true for free image-total functors in general. In Section 3, we will

state two sufficient conditions for (1) to hold (cf. Theorems 3.14 and 3.15).

The following theorem shows that it will in fact be enough to prove (1), since (2) then fol-

lows from the assumption that F is a free image-total functor and general category-theoretic

arguments.

Theorem 2.11. Let pV be a full subcategory of pMA, let F : pV → pV be a free image-

total functor, η : 1 → F the associated natural transformation, B0 ∈ pV, and let (kn :

FnB0 → Bω) be the pMA-colimit of the image-total chain (ηFnB0 : FnB0 → Fn+1B0)n∈N.

If Bω ∈ V, then Bω is the free total V algebra over B0.

Proof. Before proving the theorem, we first prove two lemmas.

Lemma 2.12. For any C ∈ V, the map ηC : C → FC is an isomorphism.

Proof. If C ∈ V, then the identity map idC : C → C is image-total. The result follows from

applying the free image-total property of F to idC . �

Lemma 2.13. If Bω ∈ V, then ηBω ◦ kn+1 = Fkn, for all n.

Proof. Note that ηBω ◦kn : Bn → FBω is an image-total morphism, since FBω is total, being

isomorphic to Bω by Lemma 2.12. Now, since (Fkn)◦ηBn = ηBω ◦kn (by naturality of η) and

ηBω ◦kn+1 ◦ηBn = ηBω ◦kn (as the maps kn form a co-cone under the chain), the result follows

from the uniqueness part of the free image-total property of F, applied to ηBω ◦ kn. �

We now prove the theorem. Assume that Bω ∈ V. Let f0 : B0 → C be a pMA morphism

into some C ∈ V. Inductively define fn+1 : Bn+1 → C to be η−1
C ◦ F fn, so that the following

diagram commutes.
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Bn Bn+1

C FC

ηBn

fn
fn+1

F fn

ηC

η−1
C

Let f̄ : Bω → C be the unique pMA morphism such that f̄ ◦ kn = fn. It follows in particular

that f̄ ◦ k0 = f0.

To show that f̄ is unique, suppose that g : Bω → C is a pMA morphism such that g◦k0 = f0.

It suffices to show that g ◦ kn = fn, by induction. If g ◦ kn = fn, then Fg ◦ Fkn = F fn. The

commutativity of the following diagram then shows that g ◦ kn+1 = η−1
C ◦ (F fn) =: fn+1.

Bn+1

Bω FBω

C FC

kn+1
Fkn

F fn

ηBω

g

ηC

η−1
C

Fg

In this diagram, the upper triangle commutes by Lemma 2.13, and the lower square com-

mutes by naturality of η. �

3 The functor for a quasi-equational class

In this section we will show, given a set E of rank 0,1 quasi-equations, how to define a

free image-total functor FE on the category pVE of partial modal algebras satisfying the

quasi-equations in E. Moreover, we will state sufficient conditions for the colimit of the

chain arising from repeated application of the functor FE to be in pVE. In the latter case,

all conditions of Theorem 2.11 will be satisfied, and consequently the colimit of the chain

will be the free total pVE algebra over a given partial pVE algebra. We end the section by

showing how to then construct the free V algebra over a given set.
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Remark 3.1 (On rewriting arbitrary quasi-equations into quasi-equations of rank 0,1). For

any set E of quasi-equations, there is a set E′ of quasi-equations of rank 0,1 such that a partial

algebra satisfies E iff it satisfies E′. The method to produce this set E′ is completely general,

and is sometimes called flattening. The idea of this method is that one may repeatedly

replace higher-rank terms by newly introduced variables.

Consider for example the class of S4 algebras. This class is usually axiomatized by the

equations

a ≤ ^a (1)

^^a ≤ ^a. (2)

The first equation is already of rank 0,1. To rewrite the second equation, we introduce a new

variable a′ to replace the inner ^a in ^^a. The second equation is then equivalent to

a′ ≤ ^a implies ^a′ ≤ ^a,

which is a rank 0,1 quasi-equation.

We will briefly sketch how this approach works in general, leaving out the details for the

reader to fill in. If (
∧n

i=1 si ≤ ti) → s ≤ t is a quasi-equation in which a variable x occurs

with rank > 1, say in s, then let u be the largest subterm of s in which that occurrence of x is

not under the scope of a diamond. Then^u is a subterm of s. Let us assume for now that^u

occurs positively in s. Let y be a fresh variable. Now let sn+1 ≤ tn+1 be the equation y ≤ ^u,

which is of rank 0,1 by definition. Let s′ be the term s, except that the entire subterm ^u is

replaced by the fresh variable y. One may prove that an algebra satisfies the quasi-equation

(
∧n

i=1 si ≤ ti) → s ≤ t iff it satisfies (
∧n+1

i=1 si ≤ ti) → s′ ≤ t. The occurrence of y in s′ is

of strictly lower rank than the occurrence of x in s that we started from. Now proceed by

induction.4

For the rest of this section, we fix a set E of rank 0,1 quasi-equations. To define the functor

FE : pVE → pVE, we will need the concept of an E-congruence, which in turn derives from

the concept of a partial modal algebra congruence. Recall that we defined a partial modal

quotient to be a pMA morphism p : B → C which is surjective, and maps dom(^B) onto

dom(^C).

Definition 3.2. Let (B,^B) be a partial modal algebra. A partial modal algebra congru-

4To complete the formal proof, one would also consider the case in which ^u occurs negatively in s, as well as
the cases in which the occurrence of x with rank > 1 is in one of the si, ti, or in t. All of these cases are treated
similarly.
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ence on (B,^B) is a Boolean algebra congruence ϑ on B satisfying5

if a, a′ ∈ dom(^B) and a ≈ a′, then ^Ba ≈ ^Ba′.

We now have the following connection between pMA quotients and pMA congruences, as

one would expect.

Proposition 3.3. If ϑ is a pMA congruence on (B,^B), then there exists a pMA quotient

p : (B,^B)� (B/ϑ,^B/ϑ) such that ker(p) = ϑ.

Proposition 3.4. If p : (B,^B)� (C,^C) is a pMA quotient, then ker(p) := {(b, b′) | p(b) =

p(b′)} is a pMA congruence, and there exists a pMA isomorphism f making the following

diagram commute:

(B,^B) (C,^C)

(B/ker(p),^B/ker(p))

[·]ker(p)

p

f
�

It is now natural to wonder, given a partial modal algebra (B,^B), whether it has any con-

gruences at all. As is to be expected, there are always two trivial pMA congruences: the

diagonal ∆ := {(b, b) | b ∈ B} is the smallest pMA congruence on (B,^B), and ∇ := B× B is

the largest pMA congruence on (B,^B). The following lemma and definition show that we

can define a smallest pMA congruence which identifies a given set of pairs.

Lemma 3.5. Let (B,^B) be a partial modal algebra, and Θ a collection of pMA congru-

ences on B. Then
⋂
ϑ∈Θ ϑ is a pMA congruence on (B,^B).

Definition 3.6. Let (B,^B) be a partial modal algebra, and S ⊆ B × B a set of pairs. Then

Θ(S ) :=
⋂
{ϑ ⊆ B × B | ϑ is a pMA congruence and S ⊆ ϑ}

is the smallest pMA congruence containing S , and we call it the pMA congruence gener-
ated by S .

We can now also define ‘partial E-congruences’ in the obvious way, and have exactly the

same theory as described above for partial MA congruences.

Definition 3.7. Let (B,^B) be a partial modal algebra. A pMA congruence ψ is called a

partial E-congruence if (B/ψ,^B/ψ) satisfies all quasi-equations in E.

5Given a congruence ϑ, we write a ≈ϑ a′ if the elements a and a′ are identified by the congruence ϑ. We usually
omit the subscript ϑ and simply write a ≈ a′, if it is clear from the context which congruence we mean.
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As before, the collection of partial E-congruences is stable under intersections, so we get

the following analogue to Definition 3.6.

Definition 3.8. Let (B,^B) be a partial modal algebra, and S ⊆ B × B a set of pairs. Then

there exists a smallest E-congruence containing S , which we call the partial E-congruence
generated by S .

The above observation allows us to describe a left adjoint to the inclusion functor IE :

pVE → pMA as follows. Let (B,^B) be an arbitrary pMA. Denote by ψB the smallest E-

congruence on (B,^B), and let JE(B,^B) be the pMA quotient of (B,^B) by the congruence

ψB. By definition, JE(B,^B) is in pVE. We denote the quotient map by ρB : (B,^B) →

JE(B,^B). If f : (B,^B) → (C,^C) is a pMA morphism, then ρC f : (B,^B) → JE(C,^C)

is a map into a pVE algebra, so there is a unique factorisation JE f : JE(B,^B)→ JE(C,^C).

Thus we have constructed a functor JE : pMA→ pVE.

Proposition 3.9. The functor JE is left adjoint to the inclusion functor IE : pVE → pMA.

Proof. If (C,^C) ∈ pVE, then a pMA morphism (B,^B) → (C,^C) factors uniquely

through JE(B,^B). �

We now define a left adjoint to the forgetful functor Ud from Remark 2.2.3. We will use

this left adjoint and the functor JE to obtain a free image-total functor on pVE.

Intuitively, the left adjoint to Ud acts on a Boolean algebra B by formally adding elements

_b to B, for all b ∈ B, and turning the resulting set into a partial modal algebra. To make this

precise in Proposition 3.10 below, we recall the following free construction on the category

of Boolean algebras. Let_ : BA→ SL be the functor from the category of Boolean algebras

to the category of join-semilattices which sends a Boolean algebra B to the semilattice_B :=

{_b | b ∈ B}, on which the join operation is defined by _b ∨ _b′ := _(b ∨ b′). The functor

_ is naturally isomorphic to the forgetful functor U : BA → SL, hence it has a left adjoint

which we call F∨BA, so that F∨BA(_B) is the free Boolean algebra over the join-semilattice

_B. We use the notation _ for this functor to distinguish the original elements in B from

their counterparts in F∨BA(_B).

Proposition 3.10. Let H : BA → pMA be the functor which sends a Boolean algebra

B to the partial modal algebra (B + F∨BA(_B),_), where we regard B as subalgebra of

B + F∨BA(_B) and let _ be the modal operator which sends b ∈ B to _b and is undefined

elsewhere. For a BA homomorphism f : B → C we define H( f ) : B + F∨BA(_B) →

C + F∨BA(_C) to be the coproduct of the assignments

b 7→ f (b) for b ∈ B,

_b 7→ _ f (b) uniquely extended to F∨BA(_B).
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Then H is left adjoint to Ud.

Proof. Since UdHB = dom(^HB) � B, we have an obvious function ζB : B → HB,

namely the coproduct map into the first component. We claim that the arrow ζB is universal.

To see this, let B be a Boolean algebra, (C,^C) a pMA, and f : B → dom(^C) a BA

homomorphism. Define

f̄ : B + F∨BA(_B) → C

b 7→ f (b) for b ∈ B,

_b 7→ ^C f (b) uniquely extended to F∨BA(_B).

Then f̄ ζB = f , and it is clear that f̄ is the unique pMA morphism HB → C with this

property. �

We are now ready to define a free image-total functor FE : pVE → pVE. Essentially this

functor sends a pVE (B,^B) first to the partial modal algebra H(B) = (B + F∨BA(_B),_),

defined in Propostion 3.10, and thereafter takes the smallest pVE-quotient ensuring that the

newly defined partial operator agrees with the old one. This is made precise as follows.

Definition 3.11. Let (B,^B) be a partial VE algebra. We define

FE(B,^B) = (B + F∨BA(_B),_)/ϑB,

where ϑB denotes the smallest pVE congruence on (B + F∨BA(_B),_) satisfying

∀a ∈ dom(^B) : _a ≈ ^Ba. (3)

To define F on morphisms, let f : (B,^B)→ (C,^C) be a morphism in pVE. First define f̃

to be the pMA morphism B + F∨BA(_B)
H( f )
−−−→ C + F∨BA(_C)

[ ]ϑC
−−−−→ FEC. As ϑB ⊆ ker( f̃ ),

f̃ factors uniquely through the quotient FEB, and thus yields a well-defined function FE f :

FEB→ FEC which sends [b]ϑB to f̃ (b).

Finally we define a natural transformation η : 1 → FE, whose component ηB : B → FEB is

given by b 7→ [b]ϑB .

Lemma 3.12. The pair (FE, η) is a free image-total pair on pVE.

Proof. Clearly, for all B ∈ pVE, ηB is image-total. Now let h : B → C be an image-total

morphism in pVE. First define the function

h̃ : B + F∨BA(_B) → C

b 7→ h(b) for b ∈ B,

_b 7→ ^Ch(b) uniquely extended to F∨BA(_B).
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As h is image total, the function h̃ is well-defined. From the fact that h is a morphism in

pVE it follows that ϑB ⊆ ker(h̃), hence h̃ factors uniquely through the quotient FEB yielding

a map h̄ : FEB → C. One readily checks that h̄ is the unique extension of h satisfying

h̄ ◦ ηB = h. �

We may now apply Theorem 2.11 to derive the following.

Proposition 3.13. Let B0 be a partial VE algebra and let (kn : Fn
E

B0 → Bω) be the pMA-

colimit of the image-total chain (ηFn
E

B0 : Fn
E

B0 → Fn+1
E

B0)n∈N. If Bω is in pVE, then Bω is

the free total VE algebra over B0.

Proof. Combine Theorem 2.11 and Lemma 3.12. �

The following two theorems now follow from this proposition and Theorem 2.7. They state

sufficient conditions for the colimit Bω of the chain for B0 (described in the above theorem)

to be in pVE.

Theorem 3.14. If E is a set of equations of rank at most 1, then Bω is in VE, whence it is

the free total VE algebra over B0.

Theorem 3.15. If E is a set of quasi-equations of rank at most 1, and, for each n, the

morphism ηFn
E

B0 is an embedding, then Bω is in VE, whence it is the free total VE algebra

over B0.

The above theorems describe situations in which the forgetful functor UVE
pVE

: VE → pVE
has a left adjoint, which we will denote by FVE

pVE
. In this setting, Propositions 3.10 and 3.9

allow us to describe the free VE algebra over a given set P.

Theorem 3.16. Let E be a set of quasi-equations of rank at most 1 such that the forgetful

functor UVE
pVE

has a left adjoint. For a set P, the total VE algebra FVE
pVE

(JE(H(FBA(P)))) is

the free VE algebra over P.

Proof. Combine the universal properties of FBA, H, JE and FVE
pVE

. �

For a set of quasi-equations E and a set P of variables, we define a chain of pVE algebras

by setting B0 = JE(H(FBA(P))) and inductively defining, for n ∈ N,

Bn+1 = FE(Bn),

and letting the morphism Bn → Bn+1 be ηBn . In case the set P is finite, all the algebras in this

chain will be finite. In case, for each n ∈ N, the map ηBn is an embedding, it follows from the

above theorems that the colimit of this chain is the free VE algebra over P. The algebras in

this chain then approximate the (generally infinite) free algebra by its finite pieces, allowing

as a direct application, for example, a procedure to decide equivalence of VE terms.
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Note that in case E is axiomatized by equations, the above defined chain always yields the

free VE algebra as its colimit. However, if the morphisms in the chain are not embeddings,

the algebras do not give a faithful approximation of the total free algebra. Hence, it is

essential to determine whether the morphisms in the chain are embeddings. Duality theory

may be a useful tool in this regard. Therefore, we develop a duality theory for partial modal

algebras in the next section. In Section 5 we study the particular case of S4 algebras and

apply the developed duality to show that, for each finite partial S4 algebra B, the mapping ηB

is an embedding. Whence, the above results apply to S4. In addition, the duality will enable

us to give a concrete description of the (duals of) the algebras in the chain approximating

the free S4 algebra.

Using duality one may also show that our construction applies to the class of modal algebras

satisfying T, KB and K5 respectively. We briefly discuss these results in Section 6.

4 Duality for partial modal algebras

In this section we describe a duality for finite partial modal algebras. As is to be expected,

this duality is closely related to the duality for (total) modal algebras. Readers unfamiliar

with this duality are referred to [3] or [9].

We will focus on finite partial modal algebras as we only encounter those in our current

application, and this makes the technical details of the duality a bit easier, since topology

can then be left out of the picture. However, one may show that this duality for finite

algebras is the restriction to the finite case of a general Stone-type duality.

From the first item in Remark 2.2, we see that partial modal algebras dually correspond to

‘Kripke frames with a distinguished quotient and a relation into the quotient’. This leads

us to define the following Kripke structures for partial modal algebras, which we will call

‘q-frames’ because we think of them as ‘Kripke frames with a quotient’.

Definition 4.1. A q-frame is a triple (X,∼,R), where ∼ is an equivalence relation on X, and

R is a relation on X such that for all x, y, y′ ∈ X, if xRy ∼ y′, then xRy′ (i.e., R ◦ ∼⊆ R).

A bounded morphism from a q-frame (X,∼X ,RX) to a q-frame (Y,∼Y ,RY ) is a function

f : X → Y such that

1. if x ∼X x′, then f (x) ∼Y f (x′),

2. if xRX x′, then f (x)RY f (x′),

3. if f (x)RYy, then there exists x′ ∈ X such that xRX x′ and f (x′) ∼Y y.

We denote the category of q-frames with bounded morphisms by qFr, and the full subcate-

gory of q-frames based on a finite set by qFrω.
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Remark 4.2. Again, q-frames could also be equivalently described as structures of the form

(X, X′, q,R), where q : X → X′ is a surjective map and R is a relation from X to X. The

definition of bounded morphism can then also be reformulated with commutative diagrams,

in a similar way as we did in Remark 2.2.1.

Condition 3 is a generalization of the notion of ‘relativized openess’, which was introduced

by Ghilardi in [6]. He only works with preordered structures, but generalizing his notion to

more general relations, one would formulate Condition 3 in his language by saying that the

map f is q-open.

We now have the following duality between finite partial modal algebras and finite q-frames.

Theorem 4.3. There is a dual equivalence between the categories pMAω and qFrω.

Proof. The quickest way to see that this is true is using the categorical framework outlined

in Remarks 2.2.1 and 4.2 and the basic Stone duality Setop
ω ' BAω. However, the following

proof gives a more concrete description of the duality, which we will use later. We define

functors Φ : qFrop
ω � pMA : Ψ. For a q-frame (X,∼,R), let Φ(X,∼,R) be the partial modal

algebra (B,^B), where

• B := P(X),

• dom(^B) := {U ∈ P(X) | U is ∼ -saturated},

• for U ∈ dom(^B), ^B(U) := {x ∈ X | ∃y ∈ U : xRy} = R−1[U].

For a partial modal algebra (B,^B), let Ψ(B,^B) be the q-frame (X,∼,R), where

• X = At(B), the set of atoms of B,

• x ∼ x′ iff for all a ∈ dom(^B), x ≤ a↔ x′ ≤ a,

• xRx′ iff x ≤ ^B
(∧
{a ∈ dom(^B) | x′ ≤ a}

)
.

To understand the definition of the relation R, note that
∧
{a ∈ dom(^B) : x′ ≤ a} is the ‘best

approximation’ of the element x′ ∈ At(B) by an element of dom(^B): it is the value of the

left adjoint of the inclusion homomorphism i : dom(^B) ↪→ B. Unravelling the definitions

and using the known duality Setop
ω ' BAω, one may now show that (B,^B) � ΦΨ(B,^B),

for any finite partial modal algebra (B,^B) and (X,∼,R) � ΨΦ(X,∼,R), for any finite q-

frame (X,∼,R).

Regarding morphisms, we also rely on the known duality Setop
ω ' BAω, as follows. If

f : (X,∼X ,RX) → (Y,∼Y ,RY ) is a bounded morphism between q-frames, let Φ( f ) := f −1,

as in the duality Setop
ω ' BAω. This is a BA homomorphism from P(Y) to P(X), and

one may check from the definitions that it is in fact a partial modal homomorphism from

Φ(Y,∼Y ,RY ) to Φ(X,∼X ,RX). In the other direction, if h : (B,^B) → (C,^C) is a partial

modal homomorphism, let Ψ(h) := h[|At(C) be the function At(C) → At(B) which we
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get from the duality Setop
ω ' BAω. Again, one may check that f is a bounded morphism

from Ψ(C,^C) to Ψ(B,^B). We already know from the duality Setop
ω ' BAω that these

assignments on morphisms are mutually inverse and natural, which concludes the proof. �

We now develop, in the partial setting, an analogue of the correspondence between quotients

of modal algebras and generated subframes of Kripke frames.

Definition 4.4. Let (X,∼X ,RX) be a q-frame. We say (Y,∼Y ,RY ) is a generated sub-q-
frame of (X,∼X ,RX) if we have Y ⊆ X, ∼Y = ∼X ∩ (Y × Y), RY = RX ∩ (Y × Y), and

if y ∈ Y , x ∈ X, and yRX x, then there exists x′ ∈ Y with x ∼X x′.6

An embedding of a q-frame (Y,∼Y ,RY ) into a q-frame (X,∼X ,RX) is a bounded morphism

i : (Y,∼Y ,RY ) → (X,∼X ,RX) such that both i : Y → X and ī : Y/∼Y→ X/∼X are injective

functions. An isomorphism of q-frames is an embedding i for which moreover both i and ī

are surjective.

Lemma 4.5. Let (X,∼X ,RX) and (Y,∼Y ,RY ) be q-frames. The following are equivalent:

1. There exists an embedding i : (Y,∼Y ,RY )� (X,∼X ,RX),

2. (Y,∼Y ,RY ) is isomorphic to a generated sub-q-frame of (X,∼X ,RX).

Now, using the duality and the characterizations of quotients of partial modal algebras and

embeddings of q-frames, we can quickly deduce the following correspondence.

Proposition 4.6. Let (B,^B) be a finite partial modal algebra and (X,∼X ,RX) its dual q-

frame. There is a one-to-one correspondence between pMA congruences on (B,^B) and

generated sub-q-frames of (X,∼X ,RX).

Proof. By Proposition 3.4, pMA congruences on (B,^B) correspond to isomorphism classes

of pMA quotients of (B,^B), which correspond to isomorphism classes of embeddings into

the dual q-frame (X,∼X ,RX) by the duality (Theorem 4.3), which correspond to generated

sub-q-frames of (X,∼X ,RX) by Lemma 4.5. �

Suppose a pMA congruence is generated by a given set of pairs, in the sense of Defini-

tion 3.6. We can now calculate the generated sub-q-frame that the quotient corresponds to,

as follows.

Proposition 4.7. In the context of the previous proposition, if S ⊆ B×B is a set of pairs, then

the pMA congruence Θ(S ) generated by S corresponds to the largest generated sub-q-frame

of (X,∼,R) whose domain is a subset of the set

P(S ) := {x ∈ X | ∀(b, b′) ∈ S : x ≤ b↔ x ≤ b′}.
6Note that, in this situation, it also follows that yRY x′, since RX ◦ ∼X ⊆ RX .
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In the following section we will use this duality to construct the free S4 algebra over a finite

set of variables.

5 Partial S4 algebras

In Remark 3.1, we have shown how the usual equations for the class of S4 modal algebras

may be rewritten into equivalent quasi-equations of rank 0, 1. This axiomatization leads to

the following definition.

Definition 5.1. A partial S4 algebra is a partial modal algebra satisfying the quasi-equations

1. a ≤ ^a,

2. a ≤ ^a′ implies ^a ≤ ^a′.

We write pS4 for the class of partial S4 algebras, and pS4ω for the full subcategory of finite

partial S4 algebras.

In this section we will give a dual description of the functor FS4 (restricted to pS4ω) and

the natural transformation η. This will enable us to show that, for each finite pS4 algebra

B, ηB is injective. Hence, the construction described in Section 3 may be applied to build,

for a finite set P, a chain of embeddings of finite pS4 algebras whose colimit is the free S4

algebra over P. Moreover, the dual description of FS4 will give a concrete description of the

duals of the algebras in this chain.

5.1 Duality for partial S4 algebras

We start by describing which q-frames correspond to partial S4 algebras. Since we know

that S4 algebras correspond to qosets, i.e., Kripke frames whose relations are quasiorders

(reflexive and transitive), it is reasonable to suspect that something similar happens for q-

frames. This is why we choose to call the frames corresponding to partial S4 algebras

“q-qosets”.

Definition 5.2. We say a q-frame (X,∼,R) is a q-qoset if

1. R is reflexive,

2. for all x, y ∈ X, if xRy, then there exists y′ ∼ y such that R[y′] ⊆ R[x].

We denote the full subcategory of qFr whose objects are q-qosets by qQoset.
Let (X,∼X ,RX) be a q-frame. We say (Q,∼Q,RQ) is a generated sub-q-qoset of (X,∼X ,RX)

if it is a generated sub-q-frame of (X,∼X ,RX), which is moreover a q-qoset.
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Remark 5.3. Intuitively, the second condition in the definition of q-qoset says that R is

‘transitive up to ∼-equivalence’.7 We will see in Proposition 5.6 that this condition is the

right generalization of transitivity to the setting of q-frames.

We can write the definition of a q-qoset more concisely by defining, for x ∈ X,

Tx := {z ∈ X | R[z] ⊆ R[x]}.

The second condition then says that R[x] ⊆ [Tx]∼, where [Tx]∼ denotes the ∼-saturation of

the set Tx. It is not hard to see that reflexivity of R is equivalent to [Tx]∼ ⊆ R[x], for all

x ∈ X.

From this remark, we conclude

Lemma 5.4. A q-frame (X,∼,R) is a q-qoset iff for all x ∈ X, R[x] = [Tx]∼.

Partial S4 congruences on a partial modal algebra (B,^B) with dual q-frame (X,∼,R) corre-

spond to generated sub-q-frames of (X,∼,R), which are in addition q-qosets. The following

lemma will be of use in the description of the dual of FS4, where we have to compute the

generated sub-q-qoset corresponding to a given partial S4 quotient.

Lemma 5.5. Let (X,∼X ,RX) be a q-frame, Q ⊆ X a subset, ∼Q := ∼X ∩ (Q × Q), and

RQ := RX ∩ (Q × Q). Then the following are equivalent:

1. (Q,∼Q,RQ) is a generated sub-q-qoset of (X,∼X ,RX).

2. ∀q ∈ Q, x ∈ X ( qRX x ⇔ ∃x′ ∈ Q : x ∼ x′ and RX[x′] ⊆ RX[q] ).

Proof. It is not hard to see that (2) implies (1). Suppose (1) holds, and let q ∈ Q and x ∈ X

with qRX x. As Q is the underlying set of a generated sub-q-frame, pick p ∈ Q with x ∼ p,

which implies qRQ p. Since Q is a q-qoset, pick x′ ∈ Q with p ∼ x′ and RQ[x′] ⊆ RQ[q].

By transitivity of ∼, we have x ∼ x′, and because RX ◦ ∼ = RX and Q is a generated sub-

q-frame, we also get RX[x′] ⊆ RX[q]. For the other direction, use that RX is reflexive and

RX ◦ ∼X = RX . �

The justification for the definition of q-qoset lies in the following proposition.

Proposition 5.6. Let (B,^B) be a finite partial modal algebra and (X,∼,R) its dual q-frame.

The following are equivalent:

1. (B,^B) is a partial S4 algebra,

2. (X,∼,R) is a q-qoset.

7Note that a relation R is transitive if, for all x, y ∈ X, if xRy, then R[y] ⊆ R[x].

21



Proof. In fact, we can show that the conditions (1) and (2) in the definitions of partial

S4 algebra and q-qoset are equivalent, respectively. This is an exercise in correspondence

theory. Regarding condition (1):

∀a ∈ dom(^B) : a ≤ ^Ba ⇐⇒ ∀x ∈ At(dom(^B)) : x ≤ ^Bx

⇐⇒ ∀x ∈ X : [x]∼ ⊆ R−1[x]

⇐⇒ xRx

For the last backward implication, one uses that R ◦ ∼ = R.

The calculation of the correspondent of condition (2) is slightly more complicated, but fol-

lows standard Sahlqvist procedures, as illustrated below. First of all, unravelling the defini-

tions, and using R ◦ ∼ = R, we get:

∀a, a′ ∈ dom(^B) (a ≤ ^Ba′ → ^Ba ≤ ^Ba′) ⇐⇒

∀y ∈ X ∀S ⊆ X ([y]∼ ⊆ R−1[S ]→ R−1[y] ⊆ R−1[S ]).

Taking the contrapositive of the last condition and pulling out an existential quantifier, we

see it is equivalent to

∀x, y ∈ X ∀S ⊆ X [xRy ∧ (∀s ∈ S : ¬xRs)]→ [∃y′ ∈ X : y′ ∼ y ∧ (∀s ∈ S : ¬y′Rs)].

Let us abbreviate the long implication after the three initial universal quantifiers by ϕ(x, y, S ).

Note that if ϕ(x, y, S 0) holds for some x, y ∈ X and S 0 ⊆ X, then for any S ⊆ S 0, we have

that ϕ(x, y, S ) still holds.

The largest subset S 0 for which the antecedent is true is S 0 := R[x]c, showing that this

condition is in fact equivalent to the first-order condition

∀x, y ∈ X [xRy→ ∃y′ ∈ X : y′ ∼ y ∧ (∀w ∈ R[x]c : ¬y′Rw)],

which is clearly equivalent to condition (2) in the definition of q-qoset. �

From this fact, we now deduce the following corollaries from Theorem 4.3, Proposition 4.6

and Proposition 4.7, respectively.

Corollary 5.7. The dual equivalence of Theorem 4.3 restricts to a dual equivalence between

the categories pS4ω and qQosetω.

Corollary 5.8. Let (B,^B) be a finite partial modal algebra and (X,∼X ,RX) its dual q-

frame. There is a one-to-one correspondence between pS4 congruences on (B,^B) and

generated sub-q-qosets of (X,∼X ,RX).
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Corollary 5.9. In the context of the previous proposition, if S ⊆ B × B is a set of pairs,

then the pS4 congruence generated by S corresponds to the largest generated sub-q-qoset

of (X,∼,R) whose domain is a subset of the set

P(S ) := {x ∈ X | ∀(b, b′) ∈ S : x ≤ b↔ x ≤ b′}.

5.2 Construction of the free S4 algebra

Using the duality for partial S4 algebras, we will now show that the map ηB for the free

image-total functor FS4 is injective, for all finite pS4 algebras B (Corollary 5.15). This

will enable us to apply Theorem 3.15 and conclude that the colimit of the chain of algebras

obtained from repeatedly applying FS4 is the free S4 algebra.

To obtain the result that each ηB is injective, we give a dual description of the functor FS4.

Throughout this section, B will be a finite pS4 algebra, with dual frame (X,∼,R). We start

by describing the dual of the partial modal algebra (B + F∨BA(_B),_).

Lemma 5.10. The q-frame dual to (B + F∨BA(_B),_) is (X × P(X),=1,R3), where, for

(x,T ), (y, S ) ∈ X × P(X), (x,T ) =1 (y, S ) iff x = y and (x,T )R3(y, S ) iff y ∈ T.

Proof. It is well-known that At(F∨BA(_B)) � P(X) (for more details, see for example [14,

Section 15]). Hence, as the duality turns coproducts into products, At(B + F∨BA(_B)) �

X × P(X). Using the description of the dual q-frame given in the proof of Theorem 4.3, the

descriptions of the dual relations follow from a straightforward computation. �

To compute the dual of (B + F∨BA(_B),_)/ϑB, we wish to calculate the subset PX of atoms

of X × P(X) satisfying the equality

∀a ∈ dom(^B) : _a ≈ ^Ba, (3)

which we used to define the partial S4 congruence ϑB, as in Definition 3.11. By Corol-

lary 5.9, the q-frame dual to FS4B is then the largest generated sub-q-qoset of (X ×P(X),=1

,R3) whose domain is contained in PX .

Let (x,T ) ∈ X × P(X). We want to find conditions on (x,T ) so that

∀a ∈ dom(^B) : (x,T ) ≤ _a ⇐⇒ (x,T ) ≤ ^Ba.

The domain of ^B consists of the ∼-saturated subsets of X. As both _ and ^B preserve

joins, it suffices to consider the atoms of dom(^B), i.e., the elements of B = P(X) of the

form [y]∼, where y ∈ X. As R ◦ ∼ = R, R−1[[y]∼] = R−1[y]. Note that

(x,T ) ≤ ^B[y]∼ ⇔ x ≤ R−1[y] ⇔ y ∈ R[x].
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Furthermore,

(x,T ) ≤ _[y]∼ ⇔ T ∩ [y]∼ , ∅ ⇔ y ∈ [T ]∼.

Hence, (x,T ) satisfies the equality for all a ∈ dom(^B) iff

R[x] = [T ]∼.

We conclude

Lemma 5.11. The collection PX of atoms in X × P(X) which satisfy (3) is

PX = {(x,T ) ∈ X × P(X) | R[x] = [T ]∼}.

Therefore, the dual of the functor FS4 takes a q-frame (X,∼,R) to the largest generated sub-

q-qoset of (X × P(X),=1,R3) whose domain is contained in PX . Let us call the domain of

this q-qoset QX . Applying Lemma 5.5 and filling in the definitions of the relations =1 and

R3 yields that QX is the largest subset Q of PX satisfying,

∀(x,T ) ∈ Q, y ∈ X : [y ∈ T ⇔ ∃S ⊆ X. (y, S ) ∈ Q and S ⊆ T ] (4)

Although this gives some description of the dual of the functor FS4, we can give a more

explicit description of the subset QX here. Recall that we defined in Remark 5.3, for x ∈ X,

Tx = {z ∈ X |R[z] ⊆ R[x]}.

We noted in Lemma 5.4 that if (X,∼,R) is a q-qoset, then [Tx]∼ = R[x], i.e., (x,Tx) ∈ PX .

Now, from the fact that QX satisfies (4), we deduce the following properties.

Lemma 5.12. For any element (x,T ) ∈ QX ,

1. x ∈ T,

2. If y ∈ T, then there exists S ⊆ T such that (y, S ) ∈ QX ,

3. T ⊆ Tx.

Let us therefore define the auxiliary set

P′X := {(x,T ) ∈ PX | x ∈ T,T ⊆ Tx},

which will contain QX . We are now ready to give a characterisation of the set QX .

Proposition 5.13. Let (X,∼,R) be a q-qoset. Let

Q := {(x,T ) ∈ P′X | ∀y ∈ T∃S ⊆ T : (y, S ) ∈ P′X}.
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Then Q is equal to QX , i.e., Q is the largest generated sub-q-qoset of (X,∼,R) whose domain

is contained in PX .

Proof. By Lemma 5.12, any element (x,T ) ∈ QX will satisfy the conditions defining Q, so

QX ⊆ Q. It remains to show that Q indeed satisfies (4).

Suppose (x,T ) ∈ Q, y ∈ X. First of all, if (y, S ) ∈ Q for some S ⊆ T , then y ∈ S , so y ∈ T .

Conversely, suppose y ∈ T . By definition of Q, there exists S ⊆ T such that (y, S ) ∈ P′X .

We now aim to show that (y,T ∩ Ty) ∈ Q. To see that (y,T ∩ Ty) ∈ PX , note that

S ⊆ T ∩ Ty ⊆ Ty,

and [S ]∼ = R[y] = [Ty]∼, so [T ∩ Ty]∼ = R[y]. As y ∈ T (by assumption) and also y ∈ Ty,

we have y ∈ T ∩ Ty ⊆ Ty and therefore (y,T ∩ Ty) ∈ P′X .

To show (y,T ∩ Ty) ∈ Q, let z ∈ T ∩ Ty be arbitrary. We have to find U ⊆ T ∩ Ty such that

(z,U) ∈ P′X . As z ∈ T ∩ Ty ⊆ T and (x,T ) ∈ Q, there exists U ⊆ T such that (z,U) ∈ P′X . It

remains to show that U ⊆ Ty, from which we then conclude U ⊆ T ∩ Ty, as required. Since

z ∈ Ty, we have R[z] ⊆ R[y], which implies Tz ⊆ Ty. Now, since (z,U) ∈ P′X , it follows that

U ⊆ Tz ⊆ Ty. �

Note that it follows from the proof above that, for (x,T ) ∈ P′X and y ∈ T , there exists

some S ⊆ T with (y, S ) ∈ P′X iff (y,T ∩ Ty) ∈ P′X . Furthermore, under these condititions,

y ∈ T ∩ Ty ⊆ Ty. Hence, (y,T ∩ Ty) ∈ P′X iff R[y] = [T ∩ Ty]∼. Therefore the functor FS4 on

pS4ω (as defined in the previous section) may be described dually (on objects) by

GS4 : (X,∼,R) 7→ (QX ,=1 ∩ (QX × QX),R3 ∩ (QX × QX))

where QX = {(x,T ) ∈ X × P(X) |R[x] = [T ]∼, x ∈ T, T ⊆ Tx

and∀y ∈ T.R[y] = [T ∩ Ty]∼}.

This mapping extends to a functor GS4 on the category qQosetω. More precisely, if we write

Ψ : pS4op
ω → qQosetω for the functor in the duality from Corollary 5.7, then we showed

(Ψ ◦ FS4)(B,^B) = (GS4 ◦ Ψ)(B,^B), for every finite partial S4 algebra (B,^B).

The natural transformation η : 1 → FS4 corresponds dually to a natural transformation

π : GS4 → 1. For a finite q-qoset X, πX is the restriction of the projection function X ×

P(X) → X to a function QX → X. The following lemma shows that πX is surjective for

every finite q-qoset X. By duality we may then conclude that ηB is an embedding for every

finite S4 algebra B.

Lemma 5.14. Let (X,∼,R) be a finite q-qoset. For all x ∈ X, (x,Tx) ∈ QX .

Proof. Let x ∈ X. We have seen that (x,Tx) ∈ PX , and it is therefore clear that (x,Tx) ∈ P′X .

Let y ∈ Tx, that is, y ∈ X with R[y] ⊆ R[x]. Then Ty ⊆ Tx and (y,Ty) ∈ P′X . Hence

(x,Tx) ∈ Q = QX . �
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Corollary 5.15. Let B be a finite partial S4 algebra. The partial modal homomorphism

ηB : B→ FS4B is an embedding.

It follows that the general construction of Section 3 applies to S4, i.e., defining, for a set P,

B0 = JS4(H(FBA(P))) = (B + F∨BA(_B),_)/ϑS4,

where ϑS4 denotes the smallest pVS4 congruence on (B + F∨BA(_B),_), and inductively

defining, for n ∈ N,

Bn+1 = FS4(Bn),

yields a chain of partial S 4 algebras whose colimit is the free (total) S4 algebra over P.

The duality allows us to give a concrete description of the algebras in this chain. The dual of

B0 is the largest generated sub-q-qoset of (XP × P(XP),=1,R3), where XP = At(FBA(P)) �

P(P). The duals of the further partial S4 algebras in the chain may be obtained by repeatedly

applying the functor GS4 described above.

The first two q-frames in the dual chain for the 1-generated free S 4 algebra, i.e., P = {p},

are depicted below,

p ¬p

p ∧ _p ∧ _¬p

p ∧ _p ∧ ¬_¬p

¬p ∧ _p ∧ _¬p

¬p ∧ _p ∧ ¬_¬p

P(P) X0

GS4(X0)

In these figures, the equivalence relation is depicted as a partition. The arrows represent the

non-reflexive part of the relation R. Note that R can indeed be regarded as a relation from

points to equivalence classes of points, since R ◦ ∼= R. Moreover, in the first two figures,

the points (which are atoms of the algebra) are labelled by the formula they represent. The

formulas become considerably longer in the third step, so we have omitted them.

5.3 Comparison with the work of Ghilardi

As stated in the introduction, our method for constructing free algebras was partly inspired

by the work of Ghilardi. In this section, we will explain how the two methods relate, thereby

also shedding new light on Ghilardi’s construction.
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We fix a finite set P. In [8], Ghilardi defines a chain of total S4 algebras, with so-called

continuous maps8 between them:

(A0,�0) (A1,�1) · · · (An,�n) (An+1,�n+1) · · ·
ε0 ε1 εn−1 εn εn+1

He then takes the colimit Aω of the chain of underlying Boolean algebras and equips it with

a modal operator � by defining �[a ∈ An] = [�n+1(εn(a)) ∈ An+1]. The modal algebra

(Aω,�) is the free S4 algebra FVS4(P) over P. We compare this incremental construction to

our chain

(B0,^0) (B1,^1) · · · (Bn,^n) (Bn+1,^n+1) · · ·
ηB0 ηB1 ηBn−1 ηBn ηBn+1

of partial S4 algebras approximating FVS4(P), as described at the end of the previous section.

The underlying Boolean parts of the two chains coincide, with the only exception that our

chain starts one step later, that is, Bn = An+1 and ηBn = εn+1.

The essential observation leading to our chain of partial algebras is the fact that on the

image of εn, the total operator �n+1 takes the same value as � does in the colimit. This

image of εn is exactly the domain of the partial diamond in our chain. Ghilardi constructs

his chain in such a way that the map εn+1 is εn-open, i.e., for all a ∈ An, εn+1(�n+1εn(a)) =

�n+2εn+1(εn(a)). This corresponds to the fact that our map ηBn preserves the partial diamond.

Conversely, Ghilardi’s chain may be obtained from our chain of partial algebras by defining

the total operator �n+1 by

�n+1 = η[Bn
◦ ^n+1 ◦ ηBn ,

where η[Bn
is the left adjoint to the embedding ηBn : Bn � Bn+1.

Lemma 4.2 in [8] is the essential ingredient needed to prove that the colimit of Ghilardi’s

chain is indeed the free S4 algebra. The notion of free image-total functor, which we intro-

duced in Definition 2.10, is already implicit in this lemma. However, Ghilardi’s approach,

using continuous morphisms, is tailored to work in the specific case of the logic S4. Work-

ing in the setting of partial modal algebras has enabled us to put his construction in a broader

perspective.

6 Examples

In the previous section we have worked out in detail that our general construction applies

to the class of S4 modal algebras. We now briefly discuss some other classes of modal

algebras. We only state the results and leave the computations to the reader.

8A continuous map between modal algebras (B,^B) and (C,^C) is a Boolean algebra homomorphism f : B→
C satisfying in addition ^C f (b) ≤ f (^Bb), for all b ∈ B.
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For a finite set P, we write XP = At(FBA(P)). First, we consider the class of T algebras.

This is the class of modal algebras satisfying the axiom

a ≤ ^a. (5)

The q-frames corresponding to partial T algebras are q-frames (X,∼,R) where the relation

R is reflexive. The dual of the functor FT may be described as

GT(X,∼,R) = ({(x,T ) ∈ X × P(X) |R[x] = [T ]∼, x ∈ T },=1,R3),

where we just write =1 and R3 for the restriction of these relations on X × P(X) to the

underlying set of the described q-frame. For any T q-frame, the projection map GT(X,∼

,R) → (X,∼,R) is surjective. Hence, our general construction applies to the class of T

algebras and the approximating chain of the free T algebra over a set P may be described

dually by repeated application of the functor GT to

X0 = ({(x,T ) ∈ XP × P(XP) | x ∈ T },=1,R3),

the largest generated subframe of (XP × P(XP),=1,R3) which is a T q-frame. See [5] for

more details.

Our method also applies to the class of KB algebras, i.e., the class of modal algebras satis-

fying9

a ≤ �^a, (6)

which can be rewritten into a quasi-equation of rank 0,1 as:

a ≤ ¬^a′ implies a′ ≤ ¬^a. (7)

Total KB algebras are dual to frames with a symmetric relation. In the partial algebra setting,

a q-frame (X,∼,R) corresponds to a partial KB algebra iff it satisfies, for all x, y ∈ X,

if xRy then there exists y′ ∼ y such that y′Rx.

The dual of the functor FKB may be described as

GKB(X,∼,R) = ({(x,T ) ∈ X × P(X) |R[x] = [T ]∼,∀y ∈ T.yRx},=1,R3).

Again, the projection map GKB(X,∼,R) → (X,∼,R) is surjective for any KB q-frame and

the approximating chain of the free KB algebra over a set P may be described dually by

9As usual in modal logic, �b is shorthand for ¬^¬b.
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repeated application of the functor GKB to

(XP × P(XP),=1,R3),

which happens to be a KB q-frame already.

A final interesting example is the class of K5 algebras, i.e., the class of modal algebras

satisfying

^a ≤ �^a. (8)

These are the modal algebras dual to so called Euclidean frames. A q-frame (X,∼,R) is dual

to a partial K5 algebra iff it satisfies, for all x, y, z ∈ X,

if zRx and zRy, then there exists x′ ∼ x such that x′Ry.

In this case the projection map πX : GK5(X,∼,R) → (X,∼,R) is not always surjective, as

may be seen by considering the K5 q-frame depicted in the following figure.

However, for a finite set P, the q-frame (XP × P(XP),=1,R3) is a K5 q-frame and repeated

application of GK5 yields a chain with surjective projective maps. In fact, from the fourth

step onwards this chain is constant, which implies that the finitely generated K5 algebras

are finite.

The examples mentioned in this section may be compared with the finite models in [13],

which are similar, but were obtained independently and via completely different methods.

We believe a comparison of our results with those in [13] would be interesting future work.10

7 Partial algebras for a functor

In this section, we will show how our construction encompasses the following result of Kurz

and Bezhanishvili [2]. If a modal logic L is axiomatized by pure rank 1 axioms, then, by

results in [11], its class of algebras VL consists exactly of the algebras for a functor L on the

category of Boolean algebras. It was shown in [2] that the approximating chain for the free

VL algebra can be obtained by a uniform step-by-step construction using the functor L.

We will sketch the translation of their result into our setting. In order to do so we define the

category pLA of partial L-algebras for a given functor L on Boolean algebras, as follows.
10We thank Tadeusz Litak for pointing us to this reference, and for interesting discussions on this line of work.
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Definition 7.1. Let L : BA→ BA be a functor.11 A partial L-algebra is a tuple (B, A, i, α),

where A, B are Boolean algebras, i : A� B is an embedding, and α : LA→ B is a Boolean

homomorphism.

A pLA morphism from (B1, A1, i1, α1) to (B2, A2, i2, α2) is a pair ( f , f ′), with f : B1 → B2

and f ′ : A1 → A2 homomorphisms such that the following diagrams commute:

A1 B1

A2 B2

i1

i2

f ′ f

LA1 B1

LA2 B2

α1

α2

L f ′ f

We denote the category of partial L-algebras by pLA, and the full subcategory of partial

L-algebras for which B is finite by pLAω. We call a partial L-algebra (B, A, i, α) total if i is

an isomorphism, and denote the full subcategory of total L-algebras by tLA.

Remark 7.2. Note in particular that for the functor L = F∨BA, the category pLA is equivalent

to the category pMA of partial modal algebras. Hence, the free algebra for the variety VK

associated with the basic modal logic K can now also be constructed using the method

outlined in this section. More generally, if L is a functor for a logic whose variety V is

defined by rank 1 equations, then the category pV is equivalent to the category pLA.

We now have a functor FL on the category of finite partial L-algebras, as follows. Given a

finite partial L-algebra (B, A, i, α), let (FLB, j, β) be the following pushout in BA:

LA LB

B FLB

Li

α

j
β

Then (FLB, B, j, β) is a partial L-algebra, by the following lemma.

Lemma 7.3. The map j is an embedding.

Proof. Since i has a left inverse, Li has a left inverse. By the universal property of the

pushout, we obtain a left inverse for j. �

To define FL on morphisms, let ( f , f ′) : (B1, A1, i1, α1) → (B2, A2, i2, α2) be a pLA mor-

phism. We define the pair FL( f , f ′) := (g, g′) : (FLB1, B1, j1, β1) → (FLB2, B2, j2, β2) by

letting g′ := f , and defining g : FLB1 → FLB2 to be the unique map, given by the universal

property of the pushout FLB1, which factors the following commutative diagram:

11Throughout this section, we will assume that L sends finite Boolean algebras to finite Boolean algebras
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LA1 LB1

B1 FLB2

Li1

α1

j2 ◦ f
β2 ◦ L f

Remark 7.4. Suppose VE is a variety of partial modal algebras defined by pure rank 1

equations. Let L be the functor associated with this variety. Then, in this special case, the

free image-total functor FE from Definition 3.11 and the functor FL coincide. (Here, we

identify the categories pV and pLA, which are equivalent by Remark 7.2).

We will now show that repeated application of the functor FL yields essentially the same

chain of algebras as defined by Kurz and Bezhanishvili [2], and hence, by their result, it is

the approximating chain of the free VL algebra.

Recall that Kurz and Bezhanishvili constructed a chain of Boolean algebras by defining,

starting from a given Boolean algebra C0,

Cn+1 := C0 + L(Cn), (9)

and letting e0 : C0 → C1 = C0 + LC0 be the inclusion map into the first summand, and then

inductively defining en+1 := idC0 + Len : C0 + LCn → C0 + LCn+1.

Now, to obtain this chain of Boolean algebras (Cn)n≥0 in our setting, let C0 be a finite

Boolean algebra. We associate to it the partial L-algebra B1 := (C0 + LC0,C0, κ1, κ2), where

κ1 : C0 → C0 + LC0 and κ2 : LC0 → C0 + LC0 are the coprojection maps (note that, in

the category BA, both κ1 and κ2 are monomorphisms). Now simply define a chain of partial

L-algebras by putting, for n ≥ 1,

Bn+1 := FL(Bn).

Proposition 7.5. For each n ≥ 0, the partial L-algebra Bn+1 = FLBn is (isomorphic to)

(Cn+1,Cn, en, κ
n
2), where (en : Cn → Cn+1)n≥0 is the chain defined in (9) above, and κn

2 :

LCn → Cn+1 is the coproduct map into the second coordinate.

Proof. For n = 0, this is true by definition of B1 and e0. For n ≥ 1, using induction, this

amounts to showing that the following is a pushout diagram:

LBn LBn+1

B0 + LBn B0 + LBn+1

Len

κn
2

idB0 + Len

κn+1
2

which can be done easily, either using duality for Boolean algebras or directly. �
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Theorem 4.2 of [2] states that the colimit of the chain (Cn)n≥0 yields the free VL algebra.

We have proved here that this chain can also be obtained by repeated application of the

functor FL, and thus also yields the free VL algebra. By Remark 7.4, it now follows that

our construction of a free image-total functor FE in Section 3 encompasses the known result

from [2].

8 Future work

We have seen in this paper that, for any variety VE which is axiomatized by a set E of rank

0-1 equations, the free VE algebra can be built by repeatedly applying the functor FE. As

remarked in the introduction, this method for building the free algebra is particularly useful

for applications in the case where the transformation η : 1 → FE is pointwise injective. In

all examples that were considered here and in the literature, notably the classes axiomatized

by pure rank 1 equations and the class of T modal algebras, η is indeed pointwise injective.

The conjecture that η is injective for any set of rank 0-1 equations remains open, and is an

important next step in this research project.

In the case where E is a set of rank 0-1 quasi-equations, repeated application of the func-

tor FE yields the free algebra in the colimit if the condition that the maps ηBn are injective

throughout the chain is satisfied. Therefore, the more general question of when this condi-

tion holds is also an interesting topic for future work. We have shown that, for partial S4

algebra and KB algebras, one always gets embeddings. We do not get embeddings in general

for partial K5 algebras, however, the maps arising in our construction of the free K5 alge-

bras over a finite set are all embeddings, hence, the method does apply. It follows from the

existence of non-decidable logics that we cannot hope that, for every set of quasi-equations,

the maps ηBn in the construction of the free algebra are embeddings. We conjecture that

there even exist decidable logics for which the maps ηBn are not all embeddings. Finding

examples of such logics is left for future work. An interesting example to study would be

the class of GL modal algebras, which correspond to provability logic. Furthermore, our

method may readily be extended to multimodal algebras. This provides a new supply of

examples (with relatively simple axiomatizations) which may lead to new insights.

Finally, we have remarked that, if we have an approximating chain for a quasi-variety VE in

which all maps ηBn are injective, then we get normal forms for the logic to which the quasi-

variety VE is associated. It is therefore natural to ask whether normal forms always arise

in this way, i.e., if a logic has normal forms, must the approximating chain arising from the

functor FE then necessarily be injective? If this is true, then it would entail that the method

outlined in this paper provides an exhaustive search for normal forms, in the sense that if a

logic has normal forms, then the method outlined in this paper will yield them.
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