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Finite words and logic

Let Σ be a finite alphabet.

The set of finite words over Σ is a free monoid generated by Σ.

A word w ∈ Σ∗ may be viewed as a finite structure with linear

order < and a decomposition into unary predicates (Pa)a∈Σ:

a a b a

< < <

Every monadic second order sentence in signature

SΣ := {<} ∪ {Pa : a ∈ Σ}

describes a set of finite Σ-words.
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Regular sets

A set L of finite words is regular if it satisfies the following

equivalent conditions:

▶ L is definable by a monadic second order sentence,

▶ L is recognizable by a finite automaton,

▶ L is saturated under a finite index monoid congruence on Σ∗,

i.e., there exists a surjective homomorphism

h : Σ∗ ↠ M,

with M a finite monoid, such that, for some P ⊆ M,

L = h−1(P).
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The free profinite monoid

The free profinite monoid over Σ is the, up to isomorphism

unique, embedding of Σ into a topological monoid Σpro such that,

for every finite monoid M and function f : Σ → Mset, there exists a

unique continuous homomorphism f : Σpro → Mdisc that extends f .

FinMon

FinSet TopMon

(−)set (−)disc

(−)pro

f : Σ → Mset

f : Σpro → Mdisc

Elements of Σpro are called profinite words over Σ.
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Characterizing first-order logic

Theorem. A set L ⊆ Σ∗ is first-order definable

if, and only if,

L can be computed by an aperiodic finite monoid, i.e., one

satisfying the profinite equation

xω = xωx .

Here, for any x ∈ Σpro, the ω-power xω of x is defined as the

unique idempotent element in the orbit-closure of x .

Aperiodicity is equivalent to the absence of non-trivial subgroups.

We get the monoid of proaperiodic words as the quotient

Σap := Σpro/(xω = xωx).

Schützenberger 1965; McNaughton & Papert 1971; Reiterman 1982
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Constructions of the free profinite monoid

Theorem. The topological space underlying the free profinite

monoid Σpro can be constructed as:

▶ the limit in TopMon of a projective diagram of finite monoids,

▶ an ultrametric completion of Σ∗,

▶ the ultrafilter space of the Boolean algebra of regular sets.

Theorem. The multiplication on Σpro is dual to a residuation

structure on the regular subsets of Σ.

Reiterman 1982; Gehrke, Grigorieff & Pin 2008
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Constructions of the free profinite monoid

The equivalence

regular ⇔ MSO-definable

induces a homeomorphism

Σpro ∼= completions of the MSO-theory of finite words.

Similarly, the equivalence

aperiodic ⇔ FO-definable

induces a homeomorphism

Σap ∼= completions of the FO-theory of finite words.

Steinberg & G. 2016; Linkhorn 2021
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What do proaperiodic words look like? (I)

Definition. A first-order structure W in signature SΣ is

pseudofinite if it is a model of the common theory of finite words.

Theorem. There is an isomorphism of topological monoids

Σap ∼= elementary equivalence classes of pseudofinite Σ-words.

Here, multiplication of pseudofinite words is done by concatenation

of class representatives.

Proposition (model theory). Every elementary equivalence class of

pseudofinite Σ-words contains an ω-saturated model.

This can be used, e.g., to solve the word problem of ⟨Σap, ·, ()ω⟩.

Steinberg & G. 2016
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Example (I)

The saturated model representing the proaperiodic word (ab)ω is

ababab . . . (. . . ababab . . . )Q . . . ababab,

where the middle part has order type Q×lex Z.

A calculus: finite structures are saturated, substitution of saturated

models into saturated models remains saturated.

There also exist proaperiodic words with uncountably many factors

(these are a bit harder to draw).
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Proaperiodic words and step points

An alternative way of “realizing” profinite words as structures:

Definition. For a proaperiodic word u, define a point of u as a pair

(u1, u2) ∈ (Σap)2 such that u1u2 = u.

The set of points of u may be linearly ordered, in such a way that

the following theorem holds:

Theorem. A proaperiodic word can be fully described by a labeled

linear order of its step points, i.e., those points that have an

immediate predecessor and successor, or none at all.

Almeida, A. Costa, J. Costa, Zeitoun 2017
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What do proaperiodic words look like? (II)

The step point structure fits well with our point of view.

Recall that a model of a theory T is prime if it embeds

elementarily into every model of T .

Theorem (model theory + some work). Every elementary class of

pseudofinite words contains a prime model, which is isomorphic to

the step point structure (up to an off-by-one error), and

multiplication of step point structures is just concatenation of

prime models.

Steinberg & G. 202x
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Example (II)

The prime model representing the proaperiodic word (ab)ω is

ababab . . . . . . ababab,

where the middle part has disappeared.
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What do profinite words look like?

Some possible further directions:

▶ What happens for MSO on more than one letter?

▶ What happens for fragments of FO (in particular BΣn)?

▶ What happens for profinite structures other than words?

▶ What is the correct categorical point of view on all of this?
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