Note. Below you find one possible solution to each problem; other correct solutions are often possible.

1. Let \(n \) be an integer.

 (a) Prove: if \(5n + 3 \) is odd then \(n \) is even.

 We give a proof by contrapositive. Suppose that \(n \) is odd. Then \(n = 2x + 1 \) for some integer \(x \). Therefore,

 \[
 5n + 3 = 5(2x + 1) + 3 = 10x + 8 = 2(5x + 4),
 \]

 which is even, because \(5x + 4 \) is an integer.

 (b) Prove, using item (a): if \(5n + 3 \) is odd then \(3n - 4 \) is even.

 Assume that \(5n + 3 \) is odd. By item (a), \(n \) is even. Thus, \(n = 2y \) for some integer \(y \).

 Therefore,

 \[
 3n - 4 = 6y - 4 = 2(3y - 2),
 \]

 which is even, because \(3y - 2 \) is an integer.

 (c) Give the missing word in the following sentence: “When we proved the result in (b), we used the result in (a) as a __________.”

 Lemma.

2. State the following two statements in words:

 (a) \(\exists x \in \mathbb{R}, x^2 = -1. \)

 There exists a real number \(x \) such that \(x^2 \) is equal to \(-1\).

 (b) \(3 \mid a \iff a \equiv 2 \pmod{4}. \)

 3 divides \(a \) if and only if \(a \) is congruent to 2 modulo 4.

 State the negation of the following two statements in words:

 (c) John is driving only if John is wearing a seatbelt.

 John is driving and John is not wearing a seatbelt. or:

 It is not the case that John is driving only if John is wearing a seatbelt.

 (d) For every natural number \(n \), if \(n \) is odd, then \(n^2 \) is odd or \(n - 3 \) is even.

 There exists a natural number \(n \) such that \(n \) is odd, \(n^2 \) is even, and \(n - 3 \) is odd. or:

 It is not the case that for every natural number \(n \), if \(n \) is odd, then \(n^2 \) is odd or \(n - 3 \) is even.

3. Let \(A, B, \) and \(C \) be subsets of a universal set \(U \).

 (a) For \(U = \mathbb{N} \), give an example of three sets \(A, B \) and \(C \) that are pairwise disjoint.

 We need an example of sets of natural numbers \(A, B, C \) such that the three sets \(A \cap B, A \cap C \) and \(B \cap C \) are empty. For example, \(A = \{1\}, B = \{2, 3, 4\} \) and \(C = \{5, 6, 7\} \).

 (b) Prove that \(A - (B \cap C) = (A \cap \overline{B}) \cup (A \cap \overline{C}) \). You may use any proof method you wish. If you use any laws, state their names.

 \[
 A - (B \cap C) = A \cap B \cap \overline{C} \quad \text{ (since } A - D = A \cap \overline{D})
 \]

 \[
 = A \cap (B \cup \overline{C}) \quad \text{ (by de Morgan’s law)}
 \]

 \[
 = (A \cap B) \cup (A \cap \overline{C}) \quad \text{ (by the distributive law)}.
 \]
4. Let \(x \) and \(y \) be real numbers.
 (a) Prove that, if \(x^3 + y - xy \geq 0 \), then \(x \geq 0 \) or \(y \geq 0 \).
 Assume that \(x < 0 \) and \(y < 0 \). Then \(x^3 < 0 \) and \(xy > 0 \), so \(-xy < 0\). Therefore, \(x^3 + y - xy < 0 \).
 (b) Give the name of the proof method you used in item (a).
 Proof by contrapositive.

5. For each \(k \in \{0, 1, 2, 3\} \), let \(A_k \) be the set \(\{x \in \mathbb{Z} \mid x \equiv k \mod 4\} \).
 (a) Is \(\{A_0, A_1, A_2, A_3\} \) a partition of \(\mathbb{Z} \)? You should state the definition of ‘partition’ to explain your answer.
 Yes. It satisfies the three conditions for being a partition, namely, the sets \(A_k \) are pairwise disjoint (\(A_k \cap A_\ell = \emptyset \) when \(k \neq \ell \)), their union is \(\mathbb{Z} \) (\(\bigcup_{k=0}^{3} A_k = \mathbb{Z} \)), and none of the sets is empty (\(A_k \neq \emptyset \) for each \(k \)).
 (b) Prove that, for every integer \(y \): \(y^2 \in A_1 \) if and only if \(y \in A_1 \) or \(y \in A_3 \). You may use the following fact without proving it: for any integers \(x \) and \(y \), if \(y \equiv x \mod 4 \), then \(y^2 \equiv x^2 \mod 4 \).
 Let \(y \) be an integer. First assume that \(y \in A_1 \) or \(y \in A_3 \).
 Case 1. \(y \in A_1 \). By definition, \(y \equiv 1 \mod 4 \). By the fact, \(y^2 \equiv 1 \mod 4 \), so \(y^2 \in A_1 \).
 Case 2. \(y \in A_3 \). By definition, \(y \equiv 3 \mod 4 \). By the fact, \(y^2 \equiv 9 \mod 4 \). Since \(9 \equiv 1 \mod 4 \), \(y^2 \in A_1 \).
 Conversely, assume that \(y \notin A_1 \) and \(y \notin A_3 \). There are two cases: \(y \in A_0 \) or \(y \in A_2 \).
 Case 1. \(y \in A_0 \). Then \(y \equiv 0 \mod 4 \), so \(y^2 \equiv 0 \mod 4 \) by the fact. So \(y^2 \in A_0 \). Hence, \(y^2 \notin A_1 \).
 Case 2. \(y \in A_2 \). Then \(y \equiv 2 \mod 4 \), so \(y^2 \equiv 4 \mod 4 \) by the fact. Since \(4 \equiv 0 \mod 4 \), it follows that \(y^2 \in A_0 \). Hence, \(y^2 \notin A_1 \).

6. Let \(P \), \(Q \) and \(R \) be statements.
 (a) Prove, using a truth table, that \(P \Rightarrow (Q \Rightarrow P) \) is a tautology.
 \[
 \begin{array}{c|c|c|c}
 P & Q & Q \Rightarrow P & P \Rightarrow (Q \Rightarrow P) \\
 \hline
 T & T & T & T \\
 T & F & T & T \\
 F & T & F & T \\
 F & F & T & T \\
 \end{array}
 \]
 Since the truth values in the column \(P \Rightarrow (Q \Rightarrow P) \) are all \(T \), it is a tautology.
 (b) Prove, without using a truth table, that \(P \Rightarrow \neg(Q \land R) \equiv \neg P \lor \neg Q \lor \neg R \). (Hint: use the fact that, for any statements \(P \) and \(S \), \(P \Rightarrow S \equiv \neg P \lor S \), and use de Morgan’s laws. Clearly state when you use these facts.)
 \[
 P \Rightarrow \neg(Q \land R) \equiv \neg P \lor \neg(Q \land R) \quad \text{(using } P \Rightarrow S \equiv \neg P \lor S) \\
 \equiv \neg P \lor \neg Q \lor \neg R. \quad \text{(using de Morgan’s law)}
 \]